Skip to main content

Estimating the Frèchet Normal Cone in Optimization Problems with Nonsmooth Vanishing Constraints

Abstract

The paper deals with the mathematical programming problems with nonsmooth vanishing constraints. The main focus is on the estimating the Frèchet normal cone of feasible set and presenting some stationary conditions for the problem. The obtained results generalize and improve some recent theorems in differentiable case.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Achtziger W, Kanzow C (2007) Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications. Math Program 114:69–99

    MathSciNet  Article  MATH  Google Scholar 

  2. Achtziger W, Hoheisel T, Kanzow C (2013) A smoothing-regularization approach to mathematical programs with vanishing constraints. Comput Optim Appl 55:733–767

    MathSciNet  Article  MATH  Google Scholar 

  3. Ansari Ardali A, Movahedian N, Nobakhtian S (2016) Optimality conditions for nonsmooth mathematical programs with equilibrium constraints, using convexificators. Optimization 65:67–85

    MathSciNet  Article  MATH  Google Scholar 

  4. Bigi G, Pappalardo M, Passacantando M (2016) Optimization tools for solving equilibrium problems with nonsmooth data. J Optim Theory Appl 171:887–905

    MathSciNet  Article  MATH  Google Scholar 

  5. Bonnans JF, Shapiro A (2000) Perturbation analysis of optimization problems. Springer, New York

    Book  MATH  Google Scholar 

  6. Clarke FH (1983) Optimization and nonsmooth analysis. Wiley Interscience, New York

    MATH  Google Scholar 

  7. Giorgi G, Gwirraggio A, Thierselder J (2004) Mathematics of optimization. Smooth and Nonsmooth cases. Elsivier, Amsterdam

    Google Scholar 

  8. Hoheisel T, Kanzow C (2007) First- and second-order optimality conditions for mathematical programs with vanishing constraints. Appl Math 52:495–514

    MathSciNet  Article  MATH  Google Scholar 

  9. Hoheisel T, Kanzow C (2008) Stationarity conditions for mathematical programs with vanishing constraints using weak constraint qualifications. J Math Anal Appl 337:292–310

    MathSciNet  Article  MATH  Google Scholar 

  10. Hoheisel T, Kanzow C (2009) On the Abadie and Guignard constraint qualifications for mathematical programs with vanishing constraints. Optimization 58:431–448

    MathSciNet  Article  MATH  Google Scholar 

  11. Luu DV (2016) Optimality condition for local efficient solutions of vector equilibrium problems via convexificators applications. J Optim Theory Appl 171:643–665

    MathSciNet  Article  MATH  Google Scholar 

  12. Mishra SK, Singh V, Laha V (2016) On duality for mathematical programs with vanishing constraints. Annal Oper Res 243:249–272

    MathSciNet  Article  MATH  Google Scholar 

  13. Movahedian N (2017) Bounded Lagrange multiplier rules for general nonsmooth problems and application to mathematical programs with equilibrium constraints. J Glob Optim 67:829–850

    MathSciNet  Article  MATH  Google Scholar 

  14. Movahedian N (2012) Calmness of set-valued mappings between Asplund spaces and application to equilibrium problems. Set Valued Var Anal 20(3):499–518

    MathSciNet  Article  MATH  Google Scholar 

  15. Movahedian N, Nobakhtian S (2010) Necessary and sufficient conditions for nonsmooth mathematical programs with equilibrium constraints. Nonlinear Anal 72:2694–2705

    MathSciNet  Article  MATH  Google Scholar 

  16. Mordukhovich B (2008) Optimization and equilibrium problems with equilibrium constraints in infinite-dimensional spaces. Optimization 57:715–741

    MathSciNet  Article  MATH  Google Scholar 

  17. Rockafellar RT (1970) Convex analysis. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  18. Rockafellar RT, Wets B (1998) Variational analysis. Springer, Berlin

    Book  MATH  Google Scholar 

  19. Scholtes S (2004) Nonconvex structures in nonlinear programming. Oper Res 52:368–383

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nader Kanzi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kazemi, S., Kanzi, N. & Ebadian, A. Estimating the Frèchet Normal Cone in Optimization Problems with Nonsmooth Vanishing Constraints. Iran J Sci Technol Trans Sci 43, 2299–2306 (2019). https://doi.org/10.1007/s40995-019-00683-8

Download citation

Keywords

  • Abadie constraint qualification
  • Stationary conditions
  • Frèchet normal cone
  • Vanishing constraints

Mathematics Subject Classification

  • 90C34
  • 90C40
  • 49J52