Skip to main content
Log in

Ionic Liquid-Assisted Hydrothermal Synthesis of Silver Vanadate Nanorods

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

Silver vanadate nanorods have been synthesized via ionic liquid-assisted hydrothermal method at 130 °C for 3 days using imidazolium-based functionalized ionic liquid. The obtained product when characterized by XRD shows it to be silver vanadate. The FTIR shows band at 446 cm−1 indicating V–O stretching vibration. A sharp peak at 145 cm−1 indicates the presence of layered structure and a peak at 1000 cm−1 indicates V=O stretching vibration as per Raman spectroscopy. The UV–Vis spectrum exhibits maximum absorbance at 425 nm revealing the presence of silver vanadate. The SEM revealed grass blade-like nanorods. The width of the nanorods is in the range of 40 nm as observed by TEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Cakir S, Bicer E (2010) Synthesis and characterization of barium-vanadium oxide nanocomposite uing a facile thermolysis approach. J Chil Chem Soc 55:236–239

    Article  Google Scholar 

  • Chandrappa GT, Chithaiah P, Ashoka S, Livage J (2011) Morphological evolution of (NH4)0.5 V2O5· m H2O fibers into belts, triangles, and rings. Inorg Chem 50:7421–7428

    Article  Google Scholar 

  • Chen Z, Gao S, Li R, Wei M, Zhou H (2008) Lithium insertion in ultra-thin nanobelts of Ag2V4O11/Ag. ElectroChim Acta 53:8134–8137

    Article  Google Scholar 

  • Chi Y, Liber CM (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291:851–853

    Article  Google Scholar 

  • Close MR, Petersen JL, Kugler EL (1999) Synthesis and Characterization of Nanoscale Molybdenum Sulfide Catalysts by Controlled Gas Phase Decomposition of Mo(CO)6 and H2S. Inorg Chem 38:1535–1542

    Article  Google Scholar 

  • Drew RE (1973) The structural chemistry of some peroxovanadate(V) complexes: Simon Fraser University, M.Sc., Thesis

  • Dupont J, deSouza RF, Suarez PAZ (2002) Ionic Liquid (Molten Salt) phase organometallic catalysis. Chem Rev 102:3667–3691

    Article  Google Scholar 

  • Fuller J, Carkin RT, Osteryoung RA (1997) A highly conductive room temperature molten fluoride: EMIF •2.3HF. J Electrochem Soc 144:3877–3881

    Article  Google Scholar 

  • Hadjean RB, Pereira-Ramos JP (2010) Raman Microspectrometry applied to the study of electrode materials for lithium batteries. Chem Rev 110:1278–1319

    Article  Google Scholar 

  • Holtz RD, Lima BA, Filho AGS, Brocchi M, Alves OL (2012) Nanostructured silver vanadate as a promising antibacterial additive to water-based paints. Nanomedicine 6:935–940

    Article  Google Scholar 

  • Huang CM, Cheng KW, Pan GT, Chang WS, Yang CKT (2010) CTAB-Assisted hydrothermal synthesis of silver vanadates and their photocatalytic characterization. Chem Eng Sci 65:148–152

    Article  Google Scholar 

  • Ingram G (1949) The use of silver vanadates as absorbents for sulphur dioxide. Anal Chem Acta 3:137–143

    Article  Google Scholar 

  • Konta R, Kato H, Kobayashi H, Kudo AJ (2003) Photophysical properties and photocatalytic activities under visible light irradiation of silver vanadate. Phys Chem Chem Phys 5:3061–3065

    Article  Google Scholar 

  • Lee SH, Cheong HM, Seong MJ, Liu P, Tracy CE, Mascarenhas A, Pitts JR, Deb SK (2003) Raman spectroscopic studies of amorphous vanadium oxide thin films. Solid State Ionics 165:111–116

    Article  Google Scholar 

  • Leising RA, Takeuchi ES (1993) Solid-state cathode materials for lithium batteries: effect of synthesis temperature on the physical and electrochemical properties of silver vanadium oxide. Chem Mater 5:738–742

    Article  Google Scholar 

  • Li YM, Tsai RH, Huang CM (2012) J Nanoeng Nanosyst 225:35–38

    Google Scholar 

  • Lin H, Huang CP, Li W, Ni C, Shah SI, Tseng YH (2006) Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2- chlorophenol. Appl Catal B Environ 68(1–2):1–11

    Google Scholar 

  • Malek K, Puc A, Schroeder G, Rybachenko VI, Proniewicz LM (2006) FT-IR and FT-Raman spectroscopies and DFT modelling of benzimidazolium salts. Chem Phys 327:439–451

    Article  Google Scholar 

  • Mdleleni MM, Hylon T, Suslick KS (1998) Sonochemical synthesis of nanostructured molybdenum sulfide. J Am Chem Soc 120:6189–6190

    Article  Google Scholar 

  • Nagaraju G, Chandrappa GT (2012) Solution phase synthesis of Na0.28V2O5 nanobelts into nanorings and the electrochemical performance in Li battery. Mater Res Bull 47:3216–3222

    Article  Google Scholar 

  • Nagaraju G, Ashoka S, Tharamani CN, Chandrappa GT (2009) A facile low temperature hydrothermal route to CdSO4 nanotubes/rods. Mater Lett 63:492–495

    Article  Google Scholar 

  • Nockemann P, Binnemans K, Driesen K (2005) Purification of imidazolium ionic liquids for spectroscopic applications. Chem Phys Lett 415:131–136

    Article  Google Scholar 

  • Pei LZ, Pei YQ, Xie YK, Yuan CZ, Li DK, Zhang QF (2012) Polyvinyl pyrrolidone-assisted synthesis of crystalline manganese vanadate microtubes. Mater Res 16:1023–1026

    Article  Google Scholar 

  • Pessoa JC, Cavaco I, Correia I, Duarte MT, Gillard RD, Henriques RT, Higes FJ, Madeira C, Tomaz I (1999) Inorg Chim Acta 293:1–11

    Article  Google Scholar 

  • Qian JM, Wang JP, Hou GY, Qiao GJ, Jin ZH (2005) Preparation and characterization of biomorphic SiC hollow fibers from wood by chemical vapor infiltration. Scripta Mater 53:1363–1368

    Article  Google Scholar 

  • Qing Z (2011) Silver vanadate nanoribbons: A label-free bioindicator in the conversion between human serum transferrin and apotransferrin via surface-enhanced Raman scattering. Appl Phys Lett 98:193110–193113

    Article  Google Scholar 

  • Rajkumar T, Rao RG (2008) Investigation of hybrid molecular material prepared by ionic liquid and polyoxometalate anion. J Chem Sci 120:587–594

    Article  Google Scholar 

  • Rosowski F, Atwasser S, Dobner CK, Storck S, Zuhlke J, Hibst H (2010) Catalysis Today 167:339–344

    Article  Google Scholar 

  • Saini GSS, Kaur S, Tripathi SK, Dogra SD, Abbas JM, Mahajan CG (2011) Vibrational spectroscopic and density functional theory studies of chloranil–imidazole interaction. Vib Specrosc 56:66–73

    Article  Google Scholar 

  • Shao MW, Qian GX, Ban HZ, Li M, Hu H, Lu L (2006) Synthesis and magnetic property of quasi one-dimensional Ni nanostructures via Si nanowire template. Scr Mater 55:851–854

    Article  Google Scholar 

  • Singh DP, Polychronopoulou K, Rebholz C, Aouadi SM (2010) Room temperature synthesis and high temperature study of silver vanadate nanorods. Nanotechnology 21:325601–325608

    Article  Google Scholar 

  • Singh DP, Yadav RM, Yadav TP (2012) Synthesis of Metal Vanadate Nanostructures. Adv Sci Eng 1:319–341

    Article  Google Scholar 

  • Song JH, Park HJ, Kim KJ, Jo YN, Kim JS, Jeong YU, Kim YJ (2010) Electrochemical characteristics of lithium vanadate, Li1 + xVO2, new anode materials for lithium ion batteries. J Power Sources 195:6157–6161

    Article  Google Scholar 

  • Welton T (1999) Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem Rev 99:2071–2084

    Article  Google Scholar 

  • Xia YN, Yang PD, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389

    Article  Google Scholar 

  • Zhang S, Li W, Li C, Chen J (2006) Synthesis, Characterization, and Electrochemical Properties of Ag2V4O11and AgVO3 1-D Nano/Microstructures. J Phys Chem B 110:24855–24863

    Article  Google Scholar 

  • Zheng S (2009) Synthesis and modification of metal oxide nanostructures and their applications. Queensland University of Technology Ph.D thesis

Download references

Acknowledgements

One of the authors, G. Nagaraju, acknowledges DST-SERB, Govt. of India, New Delhi (SB/FT/CS-083/2012) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Nagaraju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaraju, G., Ramasami, A.K., Balakrishna, G.R. et al. Ionic Liquid-Assisted Hydrothermal Synthesis of Silver Vanadate Nanorods. Iran J Sci Technol Trans Sci 42, 451–456 (2018). https://doi.org/10.1007/s40995-018-0546-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-018-0546-4

Keywords

Navigation