Advertisement

Ionic Liquid-Assisted Hydrothermal Synthesis of Silver Vanadate Nanorods

  • G. Nagaraju
  • Alamelu K. Ramasami
  • Geetha R. Balakrishna
  • J. Dupont
Research Paper
  • 42 Downloads

Abstract

Silver vanadate nanorods have been synthesized via ionic liquid-assisted hydrothermal method at 130 °C for 3 days using imidazolium-based functionalized ionic liquid. The obtained product when characterized by XRD shows it to be silver vanadate. The FTIR shows band at 446 cm−1 indicating V–O stretching vibration. A sharp peak at 145 cm−1 indicates the presence of layered structure and a peak at 1000 cm−1 indicates V=O stretching vibration as per Raman spectroscopy. The UV–Vis spectrum exhibits maximum absorbance at 425 nm revealing the presence of silver vanadate. The SEM revealed grass blade-like nanorods. The width of the nanorods is in the range of 40 nm as observed by TEM.

Keywords

Silver vanadate Nanorods Ionic liquid assisted Ionic liquid Hydrothermal 

Notes

Acknowledgements

One of the authors, G. Nagaraju, acknowledges DST-SERB, Govt. of India, New Delhi (SB/FT/CS-083/2012) for financial support.

References

  1. Cakir S, Bicer E (2010) Synthesis and characterization of barium-vanadium oxide nanocomposite uing a facile thermolysis approach. J Chil Chem Soc 55:236–239CrossRefGoogle Scholar
  2. Chandrappa GT, Chithaiah P, Ashoka S, Livage J (2011) Morphological evolution of (NH4)0.5 V2O5· m H2O fibers into belts, triangles, and rings. Inorg Chem 50:7421–7428CrossRefGoogle Scholar
  3. Chen Z, Gao S, Li R, Wei M, Zhou H (2008) Lithium insertion in ultra-thin nanobelts of Ag2V4O11/Ag. ElectroChim Acta 53:8134–8137CrossRefGoogle Scholar
  4. Chi Y, Liber CM (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291:851–853CrossRefGoogle Scholar
  5. Close MR, Petersen JL, Kugler EL (1999) Synthesis and Characterization of Nanoscale Molybdenum Sulfide Catalysts by Controlled Gas Phase Decomposition of Mo(CO)6 and H2S. Inorg Chem 38:1535–1542CrossRefGoogle Scholar
  6. Drew RE (1973) The structural chemistry of some peroxovanadate(V) complexes: Simon Fraser University, M.Sc., ThesisGoogle Scholar
  7. Dupont J, deSouza RF, Suarez PAZ (2002) Ionic Liquid (Molten Salt) phase organometallic catalysis. Chem Rev 102:3667–3691CrossRefGoogle Scholar
  8. Fuller J, Carkin RT, Osteryoung RA (1997) A highly conductive room temperature molten fluoride: EMIF •2.3HF. J Electrochem Soc 144:3877–3881CrossRefGoogle Scholar
  9. Hadjean RB, Pereira-Ramos JP (2010) Raman Microspectrometry applied to the study of electrode materials for lithium batteries. Chem Rev 110:1278–1319CrossRefGoogle Scholar
  10. Holtz RD, Lima BA, Filho AGS, Brocchi M, Alves OL (2012) Nanostructured silver vanadate as a promising antibacterial additive to water-based paints. Nanomedicine 6:935–940CrossRefGoogle Scholar
  11. Huang CM, Cheng KW, Pan GT, Chang WS, Yang CKT (2010) CTAB-Assisted hydrothermal synthesis of silver vanadates and their photocatalytic characterization. Chem Eng Sci 65:148–152CrossRefGoogle Scholar
  12. Ingram G (1949) The use of silver vanadates as absorbents for sulphur dioxide. Anal Chem Acta 3:137–143CrossRefGoogle Scholar
  13. Konta R, Kato H, Kobayashi H, Kudo AJ (2003) Photophysical properties and photocatalytic activities under visible light irradiation of silver vanadate. Phys Chem Chem Phys 5:3061–3065CrossRefGoogle Scholar
  14. Lee SH, Cheong HM, Seong MJ, Liu P, Tracy CE, Mascarenhas A, Pitts JR, Deb SK (2003) Raman spectroscopic studies of amorphous vanadium oxide thin films. Solid State Ionics 165:111–116CrossRefGoogle Scholar
  15. Leising RA, Takeuchi ES (1993) Solid-state cathode materials for lithium batteries: effect of synthesis temperature on the physical and electrochemical properties of silver vanadium oxide. Chem Mater 5:738–742CrossRefGoogle Scholar
  16. Li YM, Tsai RH, Huang CM (2012) J Nanoeng Nanosyst 225:35–38Google Scholar
  17. Lin H, Huang CP, Li W, Ni C, Shah SI, Tseng YH (2006) Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2- chlorophenol. Appl Catal B Environ 68(1–2):1–11Google Scholar
  18. Malek K, Puc A, Schroeder G, Rybachenko VI, Proniewicz LM (2006) FT-IR and FT-Raman spectroscopies and DFT modelling of benzimidazolium salts. Chem Phys 327:439–451CrossRefGoogle Scholar
  19. Mdleleni MM, Hylon T, Suslick KS (1998) Sonochemical synthesis of nanostructured molybdenum sulfide. J Am Chem Soc 120:6189–6190CrossRefGoogle Scholar
  20. Nagaraju G, Chandrappa GT (2012) Solution phase synthesis of Na0.28V2O5 nanobelts into nanorings and the electrochemical performance in Li battery. Mater Res Bull 47:3216–3222CrossRefGoogle Scholar
  21. Nagaraju G, Ashoka S, Tharamani CN, Chandrappa GT (2009) A facile low temperature hydrothermal route to CdSO4 nanotubes/rods. Mater Lett 63:492–495CrossRefGoogle Scholar
  22. Nockemann P, Binnemans K, Driesen K (2005) Purification of imidazolium ionic liquids for spectroscopic applications. Chem Phys Lett 415:131–136CrossRefGoogle Scholar
  23. Pei LZ, Pei YQ, Xie YK, Yuan CZ, Li DK, Zhang QF (2012) Polyvinyl pyrrolidone-assisted synthesis of crystalline manganese vanadate microtubes. Mater Res 16:1023–1026CrossRefGoogle Scholar
  24. Pessoa JC, Cavaco I, Correia I, Duarte MT, Gillard RD, Henriques RT, Higes FJ, Madeira C, Tomaz I (1999) Inorg Chim Acta 293:1–11CrossRefGoogle Scholar
  25. Qian JM, Wang JP, Hou GY, Qiao GJ, Jin ZH (2005) Preparation and characterization of biomorphic SiC hollow fibers from wood by chemical vapor infiltration. Scripta Mater 53:1363–1368CrossRefGoogle Scholar
  26. Qing Z (2011) Silver vanadate nanoribbons: A label-free bioindicator in the conversion between human serum transferrin and apotransferrin via surface-enhanced Raman scattering. Appl Phys Lett 98:193110–193113CrossRefGoogle Scholar
  27. Rajkumar T, Rao RG (2008) Investigation of hybrid molecular material prepared by ionic liquid and polyoxometalate anion. J Chem Sci 120:587–594CrossRefGoogle Scholar
  28. Rosowski F, Atwasser S, Dobner CK, Storck S, Zuhlke J, Hibst H (2010) Catalysis Today 167:339–344CrossRefGoogle Scholar
  29. Saini GSS, Kaur S, Tripathi SK, Dogra SD, Abbas JM, Mahajan CG (2011) Vibrational spectroscopic and density functional theory studies of chloranil–imidazole interaction. Vib Specrosc 56:66–73CrossRefGoogle Scholar
  30. Shao MW, Qian GX, Ban HZ, Li M, Hu H, Lu L (2006) Synthesis and magnetic property of quasi one-dimensional Ni nanostructures via Si nanowire template. Scr Mater 55:851–854CrossRefGoogle Scholar
  31. Singh DP, Polychronopoulou K, Rebholz C, Aouadi SM (2010) Room temperature synthesis and high temperature study of silver vanadate nanorods. Nanotechnology 21:325601–325608CrossRefGoogle Scholar
  32. Singh DP, Yadav RM, Yadav TP (2012) Synthesis of Metal Vanadate Nanostructures. Adv Sci Eng 1:319–341CrossRefGoogle Scholar
  33. Song JH, Park HJ, Kim KJ, Jo YN, Kim JS, Jeong YU, Kim YJ (2010) Electrochemical characteristics of lithium vanadate, Li1 + xVO2, new anode materials for lithium ion batteries. J Power Sources 195:6157–6161CrossRefGoogle Scholar
  34. Welton T (1999) Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem Rev 99:2071–2084CrossRefGoogle Scholar
  35. Xia YN, Yang PD, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389CrossRefGoogle Scholar
  36. Zhang S, Li W, Li C, Chen J (2006) Synthesis, Characterization, and Electrochemical Properties of Ag2V4O11and AgVO3 1-D Nano/Microstructures. J Phys Chem B 110:24855–24863CrossRefGoogle Scholar
  37. Zheng S (2009) Synthesis and modification of metal oxide nanostructures and their applications. Queensland University of Technology Ph.D thesisGoogle Scholar

Copyright information

© Shiraz University 2018

Authors and Affiliations

  • G. Nagaraju
    • 1
  • Alamelu K. Ramasami
    • 2
    • 3
  • Geetha R. Balakrishna
    • 2
  • J. Dupont
    • 4
    • 5
  1. 1.Department of ChemistrySiddaganga Institute of TechnologyTumakuruIndia
  2. 2.Centre for Nano and Material SciencesJain UniversityKanakapuraIndia
  3. 3.Sri Sathya Sai Centre for Human ExcellenceMuddenahalliIndia
  4. 4.Laboratory of Molecular Catalysis, Institute of ChemistryUFRGSPorto AlegreBrazil
  5. 5.School of ChemistryUniversity of NottinghamNottinghamUK

Personalised recommendations