Skip to main content

Advertisement

Log in

Bactericidal Effect of Needle Plasma System on Pseudomonas aeruginosa

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

Thirty Pseudomonas aeruginosa isolates identified using the API 20E system, biochemical and morphological characteristics then treated with needle plasma system (NPS) at different times. Pseudomonas aeruginosa isolates were tested by disk diffusion method to profile antibiotic susceptibility after and before NPS treatment. Our results of CFU show reduction in bacterial population by an average of (~ 3.1) log CFU from an initial (~ 23.3) log CFU. The percentage reduction (R%) was 100% which gave a very good indication of killing bacteria, for all isolates. The D-value was the average between 0.5 and 2.9 for all isolates according to treatment time 10–60 min. Antimicrobial sensitivity after NPS treatment has been increased. From this study, the NPS improved the high efficiency as physical bactericidal effects. The specific primer pairs (PA-SS forward, PA-SS reverse) were used to amplify (956) bp 16S rRNA region before and after NPS, then sequenced, the results of the locally clinical nosocomial bacteria isolates (query) were (99%) identical to 16S rRNA P. aeruginosa, and have no much difference in their 16S rRNA before and after PNS treatment but have an increase in the number of mutation after PNS: 2 G > T, 3,4 deletion G, 5 deletion C, 6 deletion A, 9,10 A > G, 13 G > T, 14 T > A, 17 deletion A, 21 T > G, 22 C > A, 23 A > T, 31 A > T, 34 C > G, 925, 926 deletion T, 927, 928 deletion A, 931 G > A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bauer AW, Kirby WMM, Sherries JC, Turk M (1966) Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol 45:493–496

    Article  Google Scholar 

  • Boscariol MR, Moreira AJ, Mansano RD, Kikuchi IS, Pinto TJA (2008) Sterilization by pure oxygen plasma and by oxygen-hydrogen peroxide plasma: an efficacy study. Int J Pharm 353:170–175

    Google Scholar 

  • Denes FS, Manolache S (2004) Macromolecular plasma-chemistry, an emerging field of polymer science. Prog Polym Sci 29:815

    Article  Google Scholar 

  • Deng S, Ruan R, Mok CK, Huang G, Lin X, Chen P (2007) Inactivation of Escherichia coli on almonds using nonthermal plasma. J Food Sci 72:M62–M66

    Article  Google Scholar 

  • Ermolaeva SA et al (2011) Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. J Med Microbiol 60:75–83

    Article  Google Scholar 

  • Franklin R, Matthew A, Karen B, Michael N, George M, Dwight J (2011) Performance standards for antimicrobial susceptibility testing; twenty-first information supplement. An informational supplement for global application developed through the Clinical and Laboratory Standards Institute consensus process, vol 31, no 1. Clinical and Laboratory Standards Institute, pp 1–165

    Google Scholar 

  • Gamal FG, Ramadan A, Sahar Z, Hossam MA (2007) Characterization of Pseudomonas aeruginosa isolated from clinical and environmental samples in Minia, Eygypt: prevalence, antibiogram and resistance mehanisms. J Antimicrob Chemother 60:1010–1017

    Article  Google Scholar 

  • Grabowski LR (2001) Pulsed corona in air for water treatment. Thesis submitted of doctor, Technische Universiteit Eindhoven

  • Hashim SS (2012) Design an atmospheric pressure non thermal plasma device for killing bacteria. Thesis submitted to the college of Science for Women, University of Baghdad

  • Hong Y, Uhm H (2006) Microplasma jet at atmospheric pressure. Appl Phys Lett 89:221504

    Article  Google Scholar 

  • Jacom PRLA, Alves LR, Cabral AB, Lopes ACS, Maciel MAV (2012) Phenotypic and molecular characterization of antimicrobial resistance and virulence factors in Pseudomonas aeruginosa clinical isolates from Recife, state of Pernambuco, Brazil. Rev Soc Bras Med Trop 45(6):707–712

    Article  Google Scholar 

  • Joshi SG, Cooper M, Yost A, Paff M, Ercan UK, Fridman G, Friedman G, Fridman A et al (2011) Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrob Agents Chemother 55:1053–1062

    Article  Google Scholar 

  • Kayes MM, Critzer FJ, Kelly-Wintenberg K, Roth JR, Montie TC, Golden DA (2007) Inactivation of foodborne pathogens using a one atmosphere uniform glow discharge plasma. Foodborne Pathog Dis 4:50

    Article  Google Scholar 

  • Kelly-Wintenberg K, Montie TC, Brickman C, Roth JR, Carr AK, Sorge K, Wadsworth L, Tsai PP-Y (1998) Room temperature sterilization of surfaces and fabrics with a one-atmosphere uniform glow discharge plasma. J Ind Microbiol Biotechnol 20:69–74

    Article  Google Scholar 

  • IE Kieft (2005) Plasma needle exploring biomedical applications of non-thermal plasmas, Thesis submitted of doctor an de Technische Universiteit Eindhoven

  • Kogelschatz U (2002) Filamentary, patterned, and diffuse barrier discharges. IEEE Trans Plasma Sci 30:1400

    Article  Google Scholar 

  • Lee K, Paek K, Ju W, Lee Y (2006) Sterilization of bacteria, yeast, and bacterial endospores by atmospheric-pressure cold plasma using helium and oxygen. J Microbiol 44:269

    Google Scholar 

  • Lyczak JB, Cannon CL, Pier GB (2000) Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microb Infect 2:1051–1060

    Article  Google Scholar 

  • MacFaddin JF (2000) Biochemical tests for identification of medical bacteria, 2nd edn. Waverly Press Inc, Baltimor, pp 64–67

    Google Scholar 

  • Maisch T, Shimizu T, Li Y-F, Heinlin J, Karrer S et al (2012) Decolonisation of MRSA, S. aureus and E. coli by cold-atmospheric plasma using a porcine skin model in vitro. PLoS One 7(4):e34610. https://doi.org/10.1371/journal.pone.0034610

    Article  Google Scholar 

  • Misra NN, Tiwari BK, Raghavarao KSMS, Cullen PJ (2011) Nonthermal plasma inactivation of food-borne pathogens. Food Eng Rev 3:159–170

    Article  Google Scholar 

  • Morfill G, Kong MG, Zimmermann JL (2009) Focus on plasma medicine. New J Phys 11:115011

    Article  Google Scholar 

  • Müller S, Zahn RJ (2007) Air pollution control by nonthermal plasma. Contrib Plasma Phys 47:520–529

    Article  Google Scholar 

  • Park JH, Kumar N, Park DH, Yusupov M, Neyts EC, Verlackt CC, Bogaerts A, Kang MH, Uhm HS, Choi EH, Attri P (2015) A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma. Sci Rep 9(5):13849. https://doi.org/10.1038/srep13849

    Article  Google Scholar 

  • Robertson WD (2010) Nitrate removal rates in wood chip media of varying age. J Ecol Eng 36(11):1581–1587

    Article  Google Scholar 

  • Saleh IA et al (2014) Bacteria and fungi associated with Acute Otitis media. Int J Curr Eng Technol 4(1):316–318

    Google Scholar 

  • Sosnin EA, Stoffels E, Erofeev MV, Kieft IE, Kunts SE (2004) The effects of UV irradiation and gas plasma treatment on living mammalian cells and bacteria: a comparative approach. IEEE Trans Plasma Sci 32:1544

    Article  Google Scholar 

  • Spilker T, Coenye T, Vandamme P, LiPuma JJ (2004) PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered fro cystic fibrosis patients. J Clin Microbiol 42:2074–2079

    Article  Google Scholar 

  • Stoffels E, Flikweert AJ, Stoffels WW, Kroesen GMW (2002) Plasma needle, a non-destructive atmospheric plasma source for fine surface treatment of (bio)materials. Plasma Sour Sci Technol 4:383

    Article  Google Scholar 

  • Thompson MR, Forristal J, Kauffan P, Madden T, Kozak K, Morri RE, Saelinger CB (1991) Isolation and characterization of Pseudomonas aeruginosa exotoxin A binding glycoprotein from mouse LM cells. J Biol Chem 226:2390–2396

    Google Scholar 

  • Venezia RA, Orrico M, Houston E, Yin S, Naumova YY (2008) Lethal activity of nonthermal plasma sterilization against microorganisms. Infect Control Hosp Epidemiol 29:430

    Article  Google Scholar 

  • Yvonne A, Hang L, Siri J (2006) AMP-activation protein kinase protects against anti-epidermal growth factor receptor-Pseudomonas exotoxin A immunotoxin induced MA11 breast cancer cell death. Mol Cancer Ther 5:1050–1059

    Article  Google Scholar 

  • Ziuzina D, Patil S, Cullen PJ, Keener KM, Bourke P (2013) Atmospheric cold plasma inactivation of Escherichia coli in liquid media inside a sealed package. J Appl Microbiol 114:778–787

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank all workers in the Biotechnology Lab at the Department of Biotechnology, College of Science, University of Baghdad, for their assistance to make this work possible by providing the place, materials, and instruments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rana Kadhim Mohammed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3478 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, R.K., Abbas, H.N. Bactericidal Effect of Needle Plasma System on Pseudomonas aeruginosa. Iran J Sci Technol Trans Sci 42, 1725–1733 (2018). https://doi.org/10.1007/s40995-017-0474-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-017-0474-8

Keywords

Navigation