Skip to main content
Log in

Beta-Glucosidase Production Optimization from Newly Isolated Aspergillus tubingensis IMMIS2 Using Taguchi Statistical Design

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

Fungal production of beta-glucosidase was optimized by Taguchi statistical method using corn stover as substrate. Taguchi statistical design depicted the highest glucosidase activity (116 μg mL−1 min−1) by Aspergillus tubingensis IMMIS2 using 5 g of 80-mm mesh-sized substrate with 50% moisture contents, 0.1 g of urea, 0.2 g of KCl, 0.3 g of CaCl2, 0.01 g of MgSO4 and 3 mL of the fungal culture as inoculum. Main effect plot for SN ratio exposed that some parameters (corn stover as substrate, corn stover particle size, urea level and CaCl2) had significant effect on cellulase production as compared to some other parameters (inoculum size, KCl and MgSO4 levels). Our findings of the present study will be helpful for cost-effective and optimum production of commercially important enzymes using agro-industrial wastes as growth substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acharya PB, Acharya DK, Modi HA (2008) Optimization for cellulase production by Aspergillus niger using saw dust as substrate. Afr J Biotechnol 7(22):4147–4152

    Google Scholar 

  • Alriksson B, Rose SH, Van Zyl WH, Sjode A, Nilvebrant NO, Jonsson LJ (2009) Cellulase production from spent lignocelluloses hydrolysates by recombinant Aspergillus niger. Appl Environ Microbiol 75:2366–2374

    Article  Google Scholar 

  • Anto H, Ujjval T, Kamlesh P (2006) α amylase production by Bacillus cereus MTCC 1305 using solid state fermentation. Food Technol Biotechnol 44(2):241–245

    Google Scholar 

  • Ariffin H, Abdullah N, Umi Kalsom MS, Shirai Y, Hassan MA (2006) Production and characterisation of cellulase produced by Bacillus pumilus EB3. Int J Eng Technol 3:47–53

    Google Scholar 

  • Bakri Y, Jacques P, Thonart P (2003) Xylanase production by Penicillium canescens 10–10c in solid-state fermentation. Appl Biochem Biotechnol 108:737–748

    Article  Google Scholar 

  • Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15:583–620

    Article  Google Scholar 

  • Bin Y, Hongzhang C (2010) Effect of the ash on enzymatic hydrolysis of steam-exploded rice straw. Bioresour Technol 101(23):9114–9119

    Article  Google Scholar 

  • Das SP, Das D, Goyal A (2014) Statistical optimization of fermentation process parameters by Taguchi orthogonal array design for improved bioethanol production. J Fuels 2014:1–10

    Article  Google Scholar 

  • Devanathan A, Shanmugan T, Balasubramanian Manivannan S (2007) Cellulase production by Aspergillus niger isolated from coastal mangrove debris. Trends Appl Sci Res 2:23–27

    Article  Google Scholar 

  • dos Santos TC, Gomes DPP, Bonomo RCF, Franco M (2012) Optimization of solid state fermentation of potato peel for the production of cellulolytic enzymes. Food Chem 133:1299–1304

    Article  Google Scholar 

  • Eveleigh D, Mandels M, Andreotti R, Roche C (2009) Measurement of saccharifying cellulase. Biotechnol Biofuels 2:1–8

    Article  Google Scholar 

  • Fadel M (2000) Production physiology of cellulases and β-glucosidase enzymes of Aspergillus niger grown under solid state fermentation conditions. Online Biol Sci 1:401–411

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Gori MI, Malana MA (2010) Production of carboxymethyl cellulase from local isolate of Aspergillus species. Pak J Life Soc Sci 1:1–6

    Google Scholar 

  • Iqbal NMH, Ahmed I, Zia AM, Irfan M (2011) Purification and characterization of the kinetic parameters of cellulase produced from wheat straw by Trichoderma viride under SSF and its detergent compatibility. Adv Biosci Biotechnol 2:149–156

    Article  Google Scholar 

  • Iqbal HM, Kamal S, Ahmed I, Naveed MT (2012) Enhanced bio-catalytic and tolerance properties of an indigenous cellulase through xerogel immobilization. Adv Biosci Biotechnol 3:308–313

    Article  Google Scholar 

  • Jing L, Zhao S, Xue JL, Zhang Z, Yang Q, Xian L, Feng JX (2015) Isolation and characterization of a novel Penicillium oxalicum strain Z1-3 with enhanced cellobiohydrolase production using cellulase-hydrolyzed sugarcane bagasse as carbon source. Ind Crop Prod 77:666–675

    Article  Google Scholar 

  • Kathiresan K, Manivannan S (2006) Cellulase production by Penicillium fellutanum isolated from coastal mangrove rhizosphere soil. Res J Microbiol 1(5):438–442

    Article  Google Scholar 

  • Krishna C (1999) Production of bacterial cellulases by solid state bioprocessing of banana wastes. Bioresour Technol 69(3):231–239

    Article  Google Scholar 

  • Mrudula S, Murugammal R (2011) Production of cellulase by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Braz J Microbiol 42:1119–1127

    Article  Google Scholar 

  • Nagendran S, Hallen-Adams HE, Paper JM, Aslam N, Walton JD (2009) Reduced genomic potential for secreted plant cell wall-degrading enzymes in the ectomycorrhizal fungus Amanita bisporigera, based on the secretome of Trichoderma reesei. Fungal Genet Biol 46:427–435

    Article  Google Scholar 

  • Orencio-Trejo M, De la Torre-Zavala S, Rodriguez-Garcia A, Avilés-Arnaut H, Gastelum-Arellanez A (2016) Assessing the performance of bacterial cellulases: the use of Bacillus and Paenibacillus strains as enzyme sources for lignocellulose saccharification. Bioenergy Res 9(4):1023–1033. https://doi.org/10.1007/s12155-016-9797-0

    Article  Google Scholar 

  • Pandey AK, Edgard G, Negi S (2016) Optimization of concomitant production of cellulase and xylanase from Rhizopus oryzae SN5 through EVOP-factorial design technique and application in sorghum stover based bioethanol production. Renew Energy 98:51–56

    Article  Google Scholar 

  • Saini R, Saini JK, Adsul M, Patel AK, Mathur A, Tuli D, Singhania RR (2015) Enhanced cellulase production by Penicillium oxalicum for bio-ethanol application. Bioresour Technol 188:240–246

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    Google Scholar 

  • Sanchéz C (2009) Lignocellulosic residues, biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194

    Article  Google Scholar 

  • Stamatis DH (1977) TQM engineering handbook. Marcel Dekker, New York

    Google Scholar 

  • Sun H, Ge X, Hao Z, Peng M (2010) Cellulase production by Trichoderma sp. on apple pomace under solid state fermentation. Afr J Biotechnol 9(2):163–166

    Google Scholar 

  • Taguchi G (1986) Introduction to quality engineering. UNIPUB/Kraus International, White Plains

    Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  Google Scholar 

  • Yano S, Ozaki H, Matsuo S, Ito M, Wakayama M, Takagi K (2012) Production, purification and characterization of d-aspartate oxidase from the fungus Trichoderma harzianum SKW-36. Adv Biosci Biotechnol 3(1):7–13

    Article  Google Scholar 

  • Yi JC, Sandra JC, John AB, Shu-ting C (1999) Production and distribution of endoglucanase, cellobiohydrolase and β-glucosidase components of the cellulolytic system of Volvariella volvacea, the edible straw mushroom. Appl Environ Microbiol 65:553–559

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Hussain.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imran, M., Hussain, A., Anwar, Z. et al. Beta-Glucosidase Production Optimization from Newly Isolated Aspergillus tubingensis IMMIS2 Using Taguchi Statistical Design. Iran J Sci Technol Trans Sci 43, 701–707 (2019). https://doi.org/10.1007/s40995-017-0462-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-017-0462-z

Keywords

Navigation