Skip to main content
Log in

Exact Traveling Wave Solutions of Further Modified Korteweg–De Vries Equation in Multicomponent Plasma

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

Using the hydrodynamic equations of positive and negative ions, Boltzmann electron density distribution for degenerate electron pressure, and Poisson equation with stationary dust, a further modified Korteweg–Vries equation is derived for small but finite amplitude dust-ion-acoustic waves. ‘\(G'/G\)’ method is used to obtain a new class of solutions. The effects of physical parameters on astrophysical compact objects, and thus the nonlinear solitary and shock structures are examined corresponding to traveling waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdelsalam UM (2010) Dust-ion-acoustic solitary waves in a dense pair-ion plasma. Physica B 405:3914–3918

    Article  Google Scholar 

  • Abdelsalam UM (2013) Solitary and freak waves in superthermal plasma with ion jet. J Plasma Phys 79:287–294

    Article  Google Scholar 

  • Abdelsalam UM, Selim M (2013) Ion-acoustic waves in a degenerate multicomponent magnetoplasma. J Plasma Phys 79:163–168

    Article  Google Scholar 

  • Abdelsalam UM, Moslem WM, Ali S, Shukla PK (2008a) Exact electrostatic solitons in a magnetoplasma with degenerate electrons. Phys Lett A 372:4923–4926

    Article  Google Scholar 

  • Abdelsalam UM, Moslem WM, Shukla PK (2008b) Ion-acoustic solitary waves in a dense pair-ion plasma containing degenerate electrons and positrons. Phys Lett A 372:4057–4061

    Article  Google Scholar 

  • Abdelsalam UM, Moslem WM, Shukla PK (2008c) Localized electrostatic excitations in a thomas-fermi plasma containing degenerate electrons. Phys Plasmas 15:052303

    Article  Google Scholar 

  • Abdelsalam UM, Moslem WM, Khater AH, Shukla PK (2011) Solitary and freak waves in a dusty plasma with negative ions. Phys Plasmas 18:092305

    Article  Google Scholar 

  • Abdelsalam UM, Ali S, Kourakis I (2012) Nonlinear electrostatic excitations of charged dust in degenerate ultra-dense quantum dusty plasmas. Phys Plasmas 19:062107

    Article  Google Scholar 

  • Abdelsalam UM, Allehiany FM, Moslem WM (2016a) Nonlinear waves in GaAs semiconductor. Acta Phys Pol A 129:472–477

    Article  Google Scholar 

  • Abdelsalam UM, Allehiany FM, Moslem WM, El-Labany SK (2016b) Nonlinear structures for extended Korteweg–de Vries equation in multicomponent plasma. Pramana J Phys 86:581–597

    Article  Google Scholar 

  • Abdou MA, Soliman AA (2005) Variational iteration method for solving Burger’s and coupled Burger’s equations. J Comput Appl Math 181:245–251

    Article  MathSciNet  Google Scholar 

  • Alinejad H (2010) Dust ion-acoustic solitary and shock waves in a dusty plasma with non-thermal electrons. Astrophys Sp Sci 327:131–137

    Article  Google Scholar 

  • Burger JM (1948) A mathematical model illustrating the theory of turbulence. Academic Press, New York

    Book  Google Scholar 

  • Chandrasekhar S (1931) The maximum mass of ideal white dwarfs. Astrophys J 74:81–82

    Article  Google Scholar 

  • Chandrasekhar S (1934) Stellar configurations with degenerate cores. Observatory 57:373–377

    Google Scholar 

  • Chandrasekhar S (1935) The highly collapsed configurations of a stellar mass. Mon Not R Astron Soc 170:226–260

    Article  Google Scholar 

  • Davidson RC (1972) Methods in nonlinear plasma theory. Academic Press, New York

    Google Scholar 

  • Fan E (2000) Extended tanh-function method and its applications to nonlinear equations. Phys Lett A 277:212–218

    Article  MathSciNet  Google Scholar 

  • Fan EG (2003) Uniformly constructing a series of explicit exact solutions to nonlinear equations in mathematical physics. Chaos Solitons Fract 16:819–839

    Article  MathSciNet  Google Scholar 

  • Intrator T, Hershkowitz N, Stern R (1983) Beam-plasma interactions in a positive ion-negative ion plasma. Phys Fluids 26:1942–1948

    Article  Google Scholar 

  • Kazmierczak B (1997) Travelling waves in plasma sustained by a laser beam. Math Methods Appl Sci 20:1089–1109

    Article  MathSciNet  Google Scholar 

  • Korteweg DJ, de Vries G (1895) On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos Mag 39:422–443

    Article  MathSciNet  Google Scholar 

  • Malfliet W (1992) Solitary wave solutions of nonlinear wave equations. Am J Phys 60:650–654

    Article  MathSciNet  Google Scholar 

  • Merlino RL, Kim SH (2006) Charge neutralization of dust particles in a plasma with negative ions. Appl Phys Lett 89:091501

    Article  Google Scholar 

  • Moslem WM (1999) Propagation of ion acoustic waves in a warm multicomponent plasma with an electron beam. J Plasma Phys 61:177–189

    Article  Google Scholar 

  • Moslem WM, Abdelsalam UM, Sabry R, Shukla PK (2010) Electrostatic structures associated with dusty electronegative magnetoplasmas. New J Phys 12:073010

    Article  Google Scholar 

  • Russell JS (1844) Report on waves. In: Report of the 14th meeting of the British Association for the Advancement of Science, London

  • Samanta UK, Saha A, Chatterjee P (2013) Bifurcations of nonlinear ion acoustic travelling waves in the frame of a Zakharov–Kuznetsov equation in magnetized plasma with a kappa distributed electron. Phys Plasmas 20:052111

    Article  Google Scholar 

  • Selim MM, Abdelsalam UM (2014) Propagation of cylindrical acoustic waves in dusty plasma with positive dust. Astrophys Sp Sci 353:535–542

    Article  Google Scholar 

  • Shukla PK (2002) Dust plasma interaction in space. Nova Science Publishers Inc, New York

    Google Scholar 

  • Wang ML, Li X, Zhang J (2008) The (\(G^{^{\prime }}/G\))-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys Lett A 372:417–423

    Article  MathSciNet  Google Scholar 

  • Yusufoglu E, Bekir A (2008) Exact solutions of coupled nonlinear evolution equations. Chaos Solitons Fract 37:842–848

    Article  MathSciNet  Google Scholar 

  • Zhang J, Wei X, Lu Y (2008) A generalized (G’/G)-expansion method and its applications. Phys Lett A 372:3653

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

M. S. Zobaer would like to thank Bangladesh University of Textiles, Bangladesh, for all facilities to make this collaboration work. Authors like to thanks the respective reviewer(s) with suggestion(s) and comment(s) to improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. M. Abdelsalam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelsalam, U.M., Zobaer, M.S. Exact Traveling Wave Solutions of Further Modified Korteweg–De Vries Equation in Multicomponent Plasma. Iran J Sci Technol Trans Sci 42, 2175–2182 (2018). https://doi.org/10.1007/s40995-017-0367-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-017-0367-x

Keywords

Navigation