Skip to main content
Log in

On the Stationary Distribution for a Fuzzy Inventory Model of Type (s,S) with Inverse Gaussian Distributed Demands

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

In this study, we consider a fuzzy inventory model of type (s,S) with random demands having an inverse Gaussian distribution. We first show the monotonicity of the renewal function with respect to mean parameter. Thus we obtain the membership function of the fuzzy renewal function when the amount of demands is a random variable having an inverse Gaussian distribution with a fuzzy mean parameter by using the monotonicity property of renewal function. Making use of the membership function of the renewal function, we obtain the membership function of the fuzzy ergodic distribution of this process. We also present some numerical results obtained by using this membership function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Artalejo JR, Krishnamoorthy A, Lopez-Herrero MJ (2006) Numerical analysis of (s,S) inventory systems with repeated attempts. Ann Oper Res 141(1):67–83

    Article  MathSciNet  Google Scholar 

  • Chhikara RS, Folks JL (1989) The inverse Gaussian distribution. Marcel Dekker, New York

    MATH  Google Scholar 

  • Derieva EN (2004) A control model for an insurance company. Cybern Syst Anal 40(6):936–938

    Article  MathSciNet  Google Scholar 

  • Doksum KA, Hbyland A (1992) Models for variable-stress accelerated life testing experiments based on wiener processes and the inverse gaussian distribution. Technometrics 34(1):74–82

    Article  MathSciNet  Google Scholar 

  • Durham SD, Padgett WJ (1997) Cumulative damage models for system failure with application to carbon fibers and composites. Technometrics 39(1):34–44

    Article  Google Scholar 

  • Folks JL, Chhikara RS (1978) The inverse Gaussian distribution and its statistical application—a review. J R Stat Soc. Series B (Methodological) 40(3)263–289

    MathSciNet  MATH  Google Scholar 

  • Gavirneni S (2001) An efficient heuristic for inventory control when the customer is using a (s,S) policy. Oper Res Lett 28(4):187–192

    Article  MathSciNet  Google Scholar 

  • Gökpınar EY, Polat E, Gokpınar F, Günay S (2013) A new computational approach for testing equality of inverse Gaussian means under heterogeneity. Hacet J Math Stat 42(5):585–590

    MathSciNet  MATH  Google Scholar 

  • Hong DH (2006) Renewal process with T-related fuzzy inter-arrival times and fuzzy rewards. Inf Sci 176(16):2386–2395

    Article  MathSciNet  Google Scholar 

  • Khaniyev T, Turksen IB, GokpinarF Gever B (2013) Ergodic distribution for a fuzzy inventory model of type (s,S) with gamma distributed demands. Expert Syst Appl 40(3):958–963

    Article  Google Scholar 

  • Kim MS, Sarkar B (2017) Multi-stage cleaner production process with quality improvement and lead time dependent ordering cost. J Clean Prod 144:572–590

    Article  Google Scholar 

  • Li S (2011) Some properties of fuzzy alternating renewal processes. Math Comput Model 54(9):1886–1896

    Article  MathSciNet  Google Scholar 

  • Moon I, Shin E, Sarkar B (2014) Min–max distribution free continuous-review model with a service level constraint and variable lead time. Appl Math Comput 229:310–315

    MathSciNet  MATH  Google Scholar 

  • Nasirova TI, Yapar C, Khaniyev TA (1998) On the probability characteristics of the stock level in the model of type (s,S). Cybern Syst Anal 5:69–76

    Google Scholar 

  • Pramanik T, Samanta S, Sarkar B, Pal M (2016) Fuzzy φ-tolerance competition graphs. Soft Comput. https://doi.org/10.1007/s00500-015-2026-5

    Article  MATH  Google Scholar 

  • Sarkar B (2012) An EOQ model with delay in payments and time varying deterioration rate. Math Comput Model 55(3):367–377

    Article  MathSciNet  Google Scholar 

  • Sarkar B (2013) A production-inventory model with probabilistic deterioration in two-echelon supply chain management. Appl Math Model 37(5):3138–3151

    Article  MathSciNet  Google Scholar 

  • Sarkar B (2016) Supply chain coordination with variable backorder, inspections, and discount policy for fixed lifetime products. Math Probl Eng. https://doi.org/10.1155/2016/6318737

    Article  MathSciNet  Google Scholar 

  • Sarkar B, Majumder A (2013) Integrated vendor–buyer supply chain model with vendor’s setup cost reduction. Appl Math Comput 224:362–371

    MathSciNet  MATH  Google Scholar 

  • Sarkar B, Saren S (2016) Product inspection policy for an imperfect production system with inspection errors and warranty cost. Eur J Oper Res 248(1):263–271

    Article  Google Scholar 

  • Sarkar B, Sana SS, Chaudhuri K (2011) An imperfect production process for time varying demand with inflation and time value of money—an EMQ model. Expert Syst Appl 38(11):13543–13548

    Google Scholar 

  • Sarkar B, Cárdenas-Barrón LE, Sarkar M, Singgih ML (2014) An economic production quantity model with random defective rate, rework process and backorders for a single stage production system. J Manuf Syst 33(3):423–435

    Article  Google Scholar 

  • Sarkar B, Ganguly B, Sarkar M, Pareek S (2016) Effect of variable transportation and carbon emission in a three-echelon supply chain model. Transp Res E Logist Transp Rev 91:112–128

    Article  Google Scholar 

  • Schrödinger E (1915) Zur theorie der fall-und steigversuche an teilchen mit brownscher bewegung. Physikalische Zeitschrift 16(1915):289–295

    Google Scholar 

  • Seshadri V (1993) The inverse Gaussian distribution: a case study in exponential families. Cleredon Press, Oxford

    Google Scholar 

  • Seshadri V (1999) The inverse Gaussian distribution: statistical theory and applications. Springer, New York

    Book  Google Scholar 

  • Sett BK, Sarkar B, Goswami A (2012) A two-warehouse inventory model with increasing demand and time varying deterioration. Sci Iran 19(6):1969–1977

    Article  Google Scholar 

  • Tian L (2006) Testing equality of inverse Gaussian means under heterogeneity, based on generalized test variable. Comput Stat Data Anal 51(2):1156–1162

    Article  MathSciNet  Google Scholar 

  • Tweedie MCK (1945) Inverse statistical variates. Nature 155:453

    Article  MathSciNet  Google Scholar 

  • Wald A (1947) Sequential analysis. Wiley, New York

    MATH  Google Scholar 

  • Wang X (2011) Continuous review inventory model with variable lead time in a fuzzy random environment. Expert Syst Appl 38(9):11715–11721

    Article  Google Scholar 

  • Wang S, Watada J (2009) Fuzzy random renewal reward process and its applications. Inf Sci 179(23):4057–4069

    Article  MathSciNet  Google Scholar 

  • Wang S, Liu YK, Watada J (2009) Fuzzy random renewal process with queueing applications. Comput Math Appl 57(7):1232–1248

    Article  MathSciNet  Google Scholar 

  • Zhao R, Tang W, Yun H (2006) Random fuzzy renewal process. Eur J Oper Res 169(1):189–201

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fikri Gökpınar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaniyev, T., Gökpınar, F., Hanalioglu, T. et al. On the Stationary Distribution for a Fuzzy Inventory Model of Type (s,S) with Inverse Gaussian Distributed Demands. Iran J Sci Technol Trans Sci 42, 2035–2043 (2018). https://doi.org/10.1007/s40995-017-0363-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-017-0363-1

Keywords

Navigation