Skip to main content
Log in

Study of Terahertz Antenna by Surface Wave Theory

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

In this paper, current pulse that propagates in Terahertz antenna was simulated as a propagated surface wave. The surface wave modes which propagate in electrode were studied. It was found that the current pulse propagates as a bulk electromagnetic wave in the antenna gap and that the current pulse propagates as a surface wave in the electrodes. Phase velocity and loss of each mode were investigated. The relation between thickness of the antenna electrode and optical properties of the substrate, such as absorption and refraction index, with surface wave characteristics was studied. After solving surface wave equation for the three-layer structure, dielectric-metal-dielectric, it was found that two surface wave modes, slow mode and fast mode are allowed to propagate in the electrode layer and that surface wave cannot propagate in the antenna gap region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aliev YM, Schlüter H, Shivarova A (2000) Guided-wave-produced plasmas, vol 24. Springer Science & Business Media, New York

    Book  Google Scholar 

  • Anemogiannis E, Glytsis EN (1992) Multilayer waveguides: efficient numerical analysis of general structures. Lightw Technol J 10(10):1344–1351

    Article  Google Scholar 

  • Auston DH, Cheung KP, Smith PR (1984) Picosecond photoconducting Hertzian dipoles. Appl Phys Lett 45(3):284–286

    Article  Google Scholar 

  • Babuty A, Bousseksou A, Tetienne JP, Doyen IM, Sirtori C, Beaudoin G et al (2010) Semiconductor surface plasmon sources. Phys Rev Lett 104(22):226806

    Article  Google Scholar 

  • Berini P (2001) Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures. Phys Rev B 63(12):125417

    Article  Google Scholar 

  • Berini P (2009) Long-range surface plasmon polaritons. Adv Optics Photon 1(3):484–588

    Article  Google Scholar 

  • Berry CW, Wang N, Hashemi MR, Unlu M, Jarrahi M (2013) Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes. Nat Commun 4:1622

    Article  Google Scholar 

  • Castro-Camus E, Lloyd-Hughes J, Johnston MB (2005) Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches. Phys Rev B 71(19):195301

    Article  Google Scholar 

  • Cheng DK (1989) Field and wave electromagnetics, vol 2. Addison-wesley, New York

    Google Scholar 

  • Duvillaret L, Garet F, Roux JF, Coutaz JL (2001) Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas. Select Topics Quantum Electron IEEE J 7(4):615–623

    Article  Google Scholar 

  • Ghamsari BG, Majedi AH (2008) Terahertz transmission lines based on surface waves in plasmonic waveguides. J Appl Phys 104(8):083108

    Article  Google Scholar 

  • Katzenellenbogen N, Grischkowsky D (1992) Electrical characterization to 4 THz of N-and P-type GaAs using THz time-domain spectroscopy. Appl Phys Lett 61(7):840–842

    Article  Google Scholar 

  • Khiabani N, Huang Y, Shen YC, Boyes S (2013) Theoretical modeling of a photoconductive antenna in a terahertz pulsed system. IEEE Trans Antennas Propag 61(4):1538–1546

    Article  Google Scholar 

  • Kirawanich P, Yakura SJ, Islam NE (2009) Study of high-power wideband terahertz-pulse generation using integrated high-speed photoconductive semiconductor switches. Plasma Sci IEEE Trans 37(1):219–228

    Article  Google Scholar 

  • Lloyd-Hughes J, Castro-Camus E, Fraser MD, Jagadish C, Johnston MB (2004) Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission. Phys Rev B 70(23):235330

    Article  Google Scholar 

  • Maier SA (2007) Plasmonics: fundamentals and applications: fundamentals and applications. Springer Science & Business Media, New York

    Google Scholar 

  • Mourou G, Stancampiano CV, Antonetti A, Orszag A (1981) Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch. Appl Phys Lett 39(4):295–296

    Article  Google Scholar 

  • Nazeri M, Massudi R (2010) Study of a large-area THz antenna by using a finite difference time domain method and lossy transmission line. Meas Sci Technol 25(4):045007

    Google Scholar 

  • Otto A, Sohler W (1971) Modification of the total reflection modes in a dielectric film by one metal boundary. Opt Commun 3(4):254–258

    Article  Google Scholar 

  • Petracek J, Singh K (2002) Determination of leaky modes in planar multilayer waveguides. Photon Technol Lett IEEE 14(6):810–812

    Article  Google Scholar 

  • Peyghambarian N, Koch SW, Mysyrowicz A (1993) Introduction to semiconductor optics. Prentice-Hall, Inc, London

    Google Scholar 

  • Piao ZS, Tani M, Sakai K (1999) Carrier dynamics and THz radiation in biased semiconductor structures. Proc SPIE. doi:10.1117/12.347130

    Google Scholar 

  • Sakai K (2005) Terahertz optoelectronics. Springer, New York

    Book  Google Scholar 

  • Sano E, Shibata T (1990) Fullwave analysis of picosecond photoconductive switches. Quantum Electron IEEE J 26(2):372–377

    Article  Google Scholar 

  • Sirbu M, Lepaul SB, Aniel F (2005) Coupling 3-D Maxwell’s and Boltzmann’s equations for analyzing a terahertz photoconductive switch. Microw Theory Techn IEEE Trans 53(9):2991–2998

    Article  Google Scholar 

  • Sommerfeld AJW (1952) Electrodynamics. Academic Press, New York

    MATH  Google Scholar 

  • Tani M, Matsuura S, Sakai K, Nakashima SI (1997) Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs. Appl Opt 36(30):7853–7859

    Article  Google Scholar 

  • Winnerl S, Krenz M, Dreyhaupt A, Stehr D, Dekorsy T, Dekorsy T (2005) High-intensity THz radiation from a scalable large-aperture emitter. Conf Lasers Electro-Optics (CLEO). doi:10.1109/CLEO.2005.202327

    Google Scholar 

  • Yanwu Z, Shunxiang S, Yanling S (2008) FDTD analysis of pulse propagation on microstrip line and an exponentially parallel plate antenna produced by photoconductive switches applied bias voltage. Microw Opt Technol Lett 50(1):168–172

    Article  Google Scholar 

  • Yasuda H, Hosako I (2007) Measurement of Terahertz refractive index for plasmon waveguides. IEEE/MTT-S Int Microw Symp. doi:10.1109/MWSYM.2007.380327

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Nazeri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazeri, M., Abbasi, H. Study of Terahertz Antenna by Surface Wave Theory. Iran J Sci Technol Trans Sci 41, 1055–1061 (2017). https://doi.org/10.1007/s40995-017-0333-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-017-0333-7

Keywords

Navigation