Skip to main content
Log in

Correlation Between Neurological Deficits and Spinal Cord Pathological Changes in a Mouse Model of Multiple Sclerosis

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is a common neuroinflammatory disease causing a wide spectrum of clinical signs and symptoms. Neuropathological changes in MS including inflammation, demyelination and axonal degeneration are seen in the animal counterpart of MS, experimental autoimmune encephalomyelitis (EAE) and are biomarkers to follow the pathophysiology and any pharmacology of MS in experimental studies. To elucidate the pattern of these pathological abnormalities in EAE, different aspects of pathological findings and their correlations were studied in the model. EAE induction was done using myelin oligodendrocyte glycoprotein (MOG) 35–55 in C57BL/6 mice and hematoxylin and eosin, Luxol-fast-blue and Bielschowsky staining were used for histopathological evaluation in the lumbar, thoracic and cervical spinal cord. There were significant positive correlations between neurological disease score in EAE mice and each of these pathological findings: inflammation score, demyelination score and axonal degeneration. These correlations were observed regardless of the anatomic regions studied. Inflammation and demyelination scores were significantly associated. Degeneration and demyelination scores were correlated positively also. However, no statistically significant correlation was found between scores of inflammation and degeneration in neither of the three anatomical regions of the spinal cords of EAE mice. This study optimizes the EAE model regarding pathological findings in correlation with neurological deficits in the model. The results will help in better utility of the model in MS research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baxter AG (2007) The origin and application of experimental autoimmune encephalomyelitis. Nat Rev Immunol 7(11):904–912. doi:10.1038/nri2190

    Article  Google Scholar 

  • Benveniste EN, Liu Y, McFarland BC, Qin H (2014) Involvement of the janus kinase/signal transducer and activator of transcription signaling pathway in multiple sclerosis and the animal model of experimental autoimmune encephalomyelitis. J Interferon Cytokine Res 34(8):577–588. doi:10.1089/jir.2014.0012

    Article  Google Scholar 

  • Constantinescu CS, Farooqi N, O’Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164(4):1079–1106. doi:10.1111/j.1476-5381.2011.01302.x

    Article  Google Scholar 

  • Ercolini AM, Miller SD (2006) Mechanisms of immunopathology in murine models of central nervous system demyelinating disease. J Immunol 176(6):3293–3298. doi:10.4049/jimmunol.176.6.3293

    Article  Google Scholar 

  • Farjam M, Dehdab P, Abbassnia F, Mehrabani D, Tanideh N, Pakbaz S, Imanieh MH (2012) Thioacetamide-induced acute hepatic encephalopathy in rat: behavioral, biochemical and histological changes. Iranian Red Crescent Med J 14(3):164–170

    Google Scholar 

  • Farjam M, Ebrahimpour A, Fakhraei B (2013) CD21 positive B cell: a novel target for treatment of multiple sclerosis. Med Hypotheses 80(5):556–557. doi:10.1016/j.mehy.2013.01.016

    Article  Google Scholar 

  • Farjam M, Beigi Zarandi FB, Farjadian S, Geramizadeh B, Nikseresht AR, Panjehshahin MR (2014) Inhibition of NR2B-Containing N-methyl-d-aspartate receptors (NMDARs) in experimental autoimmune encephalomyelitis, a model of multiple sclerosis. Iranian J Pharm Res 13(2):695–705

    Google Scholar 

  • Friese MA, Fugger L (2005) Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy? Brain 128(Pt 8):1747–1763. doi:10.1093/brain/awh578

    Article  Google Scholar 

  • Giuliani F, Fu SA, Metz LM, Yong VW (2005) Effective combination of minocycline and interferon-beta in a model of multiple sclerosis. J Neuroimmunol 165(1–2):83–91. doi:10.1016/j.jneuroim.2005.04.020

    Article  Google Scholar 

  • Hauser SL, Oksenberg JR (2006) The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron 52(1):61–76. doi:10.1016/j.neuron.2006.09.011

    Article  Google Scholar 

  • Johns TG, Kerlero de Rosbo N, Menon KK, Abo S, Gonzales MF, Bernard CC (1995) Myelin oligodendrocyte glycoprotein induces a demyelinating encephalomyelitis resembling multiple sclerosis. J Immunol 154(10):5536–5541

    Google Scholar 

  • Jones MV, Nguyen TT, Deboy CA, Griffin JW, Whartenby KA, Kerr DA, Calabresi PA (2008) Behavioral and pathological outcomes in MOG 35–55 experimental autoimmune encephalomyelitis. J Neuroimmunol 199(1–2):83–93. doi:10.1016/j.jneuroim.2008.05.013

    Article  Google Scholar 

  • Kornek B, Storch MK, Weissert R, Wallstroem E, Stefferl A, Olsson T, Lassmann H (2000) Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol 157(1):267–276. doi:10.1016/S0002-9440(10)64537-3

    Article  Google Scholar 

  • Kuerten S, Lehmann PV (2011) The immune pathogenesis of experimental autoimmune encephalomyelitis: lessons learned for multiple sclerosis? J Interferon Cytokine Res 31(12):907–916. doi:10.1089/jir.2011.0072

    Article  Google Scholar 

  • Kuerten S, Kostova-Bales DA, Frenzel LP, Tigno JT, Tary-Lehmann M, Angelov DN, Lehmann PV (2007) MP4- and MOG:35-55-induced EAE in C57BL/6 mice differentially targets brain, spinal cord and cerebellum. J Neuroimmunol 189(1–2):31–40. doi:10.1016/j.jneuroim.2007.06.016

    Article  Google Scholar 

  • Lindsey JW (2005) History, clinical signs, and disease course. In: Lavi E, Constantinescu CS (eds) Experimental models of multiple sclerosis, Springer, New York

  • McCarthy DP, Richards MH, Miller SD (2012) Mouse models of multiple sclerosis: experimental autoimmune encephalomyelitis and Theiler’s virus-induced demyelinating disease. Methods Mol Biol 900:381–401. doi:10.1007/978-1-60761-720-4_19

    Article  Google Scholar 

  • Moore GR, Laule C (2012) Neuropathologic correlates of magnetic resonance imaging in multiple sclerosis. J Neuropathol Exp Neurol 71(9):762–778. doi:10.1097/NEN.0b013e3182676388

    Article  Google Scholar 

  • Nester SL (2008) Techniques in neuropathology. In: Bancroft JD, Gamble M (eds) Theory and practice of histological techniques, 6th edn. Churchill Livingstone Elsevier, London, pp 365–404

    Chapter  Google Scholar 

  • Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. New Engl J Med 343(13):938–952

    Article  Google Scholar 

  • Okuda Y, Sakoda S, Fujimura H, Saeki Y, Kishimoto T, Yanagihara T (1999) IL-6 plays a crucial role in the induction phase of myelin oligodendrocyte glucoprotein 35–55 induced experimental autoimmune encephalomyelitis. J Neuroimmunol 101(2):188–196

    Article  Google Scholar 

  • Pachner AR (2011) Experimental models of multiple sclerosis. Curr Opin Neurol 24(3):291–299. doi:10.1097/WCO.0b013e328346c226

    Article  Google Scholar 

  • Rivers TM, Schwentker FF (1935) Encephalomyelitis accompanied by myelin destruction experimentally produced in monkeys. J Exp Med 61(5):689–702

    Article  Google Scholar 

  • Shirani A, Zhao Y, Karim ME, Evans C, Kingwell E, van der Kop ML, Tremlett H (2012) Association between use of interferon beta and progression of disability in patients with relapsing-remitting multiple sclerosis. J Am Med Assoc 308(3):247–256. doi:10.1001/jama.2012.7625

    Article  Google Scholar 

  • Snodgress AB, Dorsey CH, Lacey LB (1961) Luxol fast blue staining of degenerating myelinated fibers. Anat Rec 140:83–90

    Article  Google Scholar 

  • Tafreshi AP, Ahmadi A, Ghaffarpur M, Mostafavi H, Rezaeizadeh H, Minaie B, Naseri M (2008) An Iranian herbal-marine medicine, MS14, ameliorates experimental allergic encephalomyelitis. Phytother Res 22(8):1083–1086. doi:10.1002/ptr.2459

    Article  Google Scholar 

  • van der Star BJ, Vogel DY, Kipp M, Puentes F, Baker D, Amor S (2012) In vitro and in vivo models of multiple sclerosis. CNS Neurol Disord Drug Targets 11(5):570–588

    Article  Google Scholar 

  • Vigeveno RM, Wiebenga OT, Wattjes MP, Geurts JJ, Barkhof F (2012) Shifting imaging targets in multiple sclerosis: from inflammation to neurodegeneration. J Magn Reson Imaging 36(1):1–19. doi:10.1002/jmri.23578

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Shiraz University of Medical Sciences. Authors would also like to thank Mr. Koohi and Miss. Ebrahimpour for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Farjam.

Ethics declarations

Conflict of interest

The authors disclose that there was no conflict of interest in this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarandi, F.B.B., Geramizadeh, B., Farjam, M. et al. Correlation Between Neurological Deficits and Spinal Cord Pathological Changes in a Mouse Model of Multiple Sclerosis. Iran J Sci Technol Trans Sci 41, 867–871 (2017). https://doi.org/10.1007/s40995-017-0256-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-017-0256-3

Keywords

Navigation