Skip to main content
Log in

A New Approach for Numerical Solution of Modified Korteweg-de Vries Equation

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

An Erratum to this article was published on 03 May 2017

This article has been updated

Abstract

In this paper, a lumped Galerkin method is applied with cubic B-spline interpolation functions to find the numerical solution of the modified Korteweg-de Vries (mKdV) equation. Test problems including motion of single solitary wave, interaction of two solitons, interaction of three solitons, and evolution of solitons are solved to verify the proposed method by calculating the error norms \(L_{2}\) and \(L_{\infty }\) and the conserved quantities mass, momentum and energy. Applying the von-Neumann stability analysis, the proposed method is shown to be unconditionally stable. Consequently, the obtained results are found to be harmony with the some recent results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 03 May 2017

    An erratum to this article has been published.

References

  • Biswas A (2010) 1-Soliton solution of Benjamin–Bona–Mahony equation with dual-power law nonlinearity. Commun Nonlinear Sci Numer Simul 15(10):2744–2746

    Article  MathSciNet  MATH  Google Scholar 

  • Biswas A, Ismail MS (2010) 1-Soliton solution of the coupled KdV equation and Gear–Grimshaw model. Appl Math Comput 216(12):3662–3670

    MathSciNet  MATH  Google Scholar 

  • Biswas A, Raslan KR (2011) Numerical simulation of the modified Korteweg-de Vries equation. Phys Wave Phenom 19(2):142–147

    Article  Google Scholar 

  • Biswas A, Krishnan EV, Suarez P, Kara AH, Kumar S (2013) Solitary waves and conservation laws of Bona–Chen equations. Indian J Phys 87(2):169–175

    Article  Google Scholar 

  • Dyachenko S, Zakharov D, Zakharov V (2016) Primitive potentials and bounded solutions of the KdV equation. Physica D Nonlinear Phenom 333:148–156

    Article  MathSciNet  MATH  Google Scholar 

  • Dutykh D, Tobisch E (2015) Direct dynamical energy cascade in the modified KdV equation. Physica D Nonlinear Phenom 297:76–87

    Article  MathSciNet  Google Scholar 

  • Gheorghiu CI (2016) Stable spectral collocation solutions to a class of Benjamin Bona Mahony initial value problems. Appl Math Comput 273:1090–1099

    MathSciNet  Google Scholar 

  • Girgis L, Zerrad E, Biswas A (2010) Solitary wave solutions of the Peregrine equation. Int J Oceans Oceanogr 4(1):45–54

    Google Scholar 

  • Greenwood C, Christie D, Venugopal V, Morrison J, Vogler A (2016) Modelling performance of a small array of wave energy coverters: comparison of spectral and Boussinesq models. Energy 113:258–266

  • Haq S, Hussian A, Islam S-U (2010) Solutions of coupled Burger’s, fifth-order KdV and Kawahara equations using differential transform method with Padé approximantion. Selcuk J Appl Math 11(1):43–62

    MathSciNet  MATH  Google Scholar 

  • He B, Meng Q (2016) Three kinds of periodic wave solutions and their limit forms for a modified KdV-type equation. Nonlinear Dyn 86(2):811–822

    Article  MathSciNet  MATH  Google Scholar 

  • Karakoc SBG, Zeybek H, Ak T (2014) Numerical solutions of the Kawahara equation by the septic B-spline collocation method. Stat Optim Inf Comput 2:211–221

    Article  MathSciNet  Google Scholar 

  • Karakoc SBG, Ak T, Zeybek H (2014) An efficient approach to numerical study of the MRLW equation with B-spline collocation method. Abstr Appl Anal. Article ID 59640, 15 pages

  • Kaya D (2005) An application for the higher order modified KdV equation by decomposition method. Commun Nonlinear Sci Numer Simul 10(6):693–702

    Article  MathSciNet  MATH  Google Scholar 

  • Korteweg DJ, de Vries G (1895) On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary wave. Philos Mag 39:422–443

    Article  MathSciNet  MATH  Google Scholar 

  • Miura RM, Gardner CS, Kruskal MD (1968) Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. J Math Phys 9(8):1204

    Article  MathSciNet  MATH  Google Scholar 

  • Miura RM (1976) The Korteweg-de Vries equation: a survey of results. SIAM Rev 18(3):412–459

    Article  MathSciNet  MATH  Google Scholar 

  • Prenter PM (1975) Splines and variational methods. Wiley, New York

    MATH  Google Scholar 

  • Rashidi MM, Domairry G, Dinarvand S (2009) Approximate solutions for the Burger and regularized long wave equations by means of the homotopy analysis method. Commun Nonlinear Sci Numer Simul 14(3):708–717

    Article  Google Scholar 

  • Rashidi MM, Ganji DD, Dinarvand S (2009) Explicit analytical solutions of the generalized Burger and Burger–Fisher equations by homotopy perturbation method. Numer Methods Partial Differ Equ 25(2):409–417

    Article  MathSciNet  MATH  Google Scholar 

  • Raslan KR, Baghdady HA (2015) A finite difference scheme for the modified Korteweg-de Vries equation. Gen Math Notes 27(1):101–113

    Google Scholar 

  • Siddigi SS, Arshed S (2014) Quintic B-spline for the numerical solution of the good Boussinesq equation. J Egypt Math Soc 22(2):209–213

    Article  MathSciNet  MATH  Google Scholar 

  • Shukla HS, Tamsir M, Srivastava VK, Kumar J (2014) Numerical solution of two dimensional coupled viscous Burger equation using modified cubic B-spline differential quadrature method. AIP Adv 4(117134):1–11

    Google Scholar 

  • Triki H, Wazwaz A-M (2009) Sub-ODE method and soliton solutions for the variable-coefficient mKdV equation. Appl Math Comput 214(2):370–373

    MathSciNet  MATH  Google Scholar 

  • Triki H, Kara AH, Bhrawy AH, Biswas A (2014) Soliton solution and conservation law of Gear–Grimshaw model for shallow water waves. Acta Physica Polonica A 125(5):1099–1107

    Article  Google Scholar 

  • Triki H, Ak T, Moshokoa S, Biswas A (2016) Soliton solutions to KdV equation with spatio-temporal dispersion. Ocean Eng 114:192–203

    Article  Google Scholar 

  • Ueckermann MP, Lermusiaux PFJ (2016) Hybridizable discontinuous Galerkin projection methods for Navier–Stokes and Boussinesq equations. J Comput Phys 306(1):390–421

    Article  MathSciNet  MATH  Google Scholar 

  • Vaneeva O, Popovych RO, Sophocleous C (2015) Group analysis of Benjamin–Bona–Mahony equations with time dependent coefficients. J Phys Confer Ser 621:1–12

    Google Scholar 

  • Wazwaz A-M (2008) New travelling wave solutions to the Boussinesq and the Klein–Gordon equations. Commun Nonlinear Sci Numer Simul 13(5):889–901

    Article  MathSciNet  MATH  Google Scholar 

  • Wazwaz A-M, Triki H (2011) Soliton solutions for a generalized KdV and BBM equatitons with time-dependent coefficients. Commun Nonlinear Sci Numer Simul 16(3):1122–1126

    Article  MathSciNet  MATH  Google Scholar 

  • Wazwaz A-M (2012) (2+1-dimensional mKdV(N) equations by the mKdV recursion operator: multiple soliton and multiple singular soliton solutions. Appl Math Comput 219(5):2535–2544

    MathSciNet  MATH  Google Scholar 

  • Wazwaz A-M, Xu G-Q (2015) Negative-order modified KdV equations: multiple soliton and multiple singular soliton solutions. Math Methods Appl Sci 39(4):661–667

    Article  MathSciNet  MATH  Google Scholar 

  • Wazwaz A-M (2016) The simplified Hirotas method for studying three extended higher-order KdV-type equations. J Ocean Eng Sci 1(3):181–185

    Article  Google Scholar 

  • Zeybek H, Karakoc SBG (2016) A numerical investigation of the GRLW equation using lumped Galerkin approach with cubic B-spline. SpringerPlus 5(199):1–17

    Google Scholar 

Download references

Acknowledgements

The author, Turgut Ak, is grateful to The Scientific and Technological Research Council of Turkey for granting scholarship for Ph.D. studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turgut Ak.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s40995-017-0245-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ak, T., Karakoc, S.B.G. & Biswas, A. A New Approach for Numerical Solution of Modified Korteweg-de Vries Equation. Iran J Sci Technol Trans Sci 41, 1109–1121 (2017). https://doi.org/10.1007/s40995-017-0238-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-017-0238-5

Keywords

Mathematics Subject Classification

Navigation