r-Clean Group Rings

  • Nahid Ashrafi
  • Ebrahim Nasibi
Research Paper


Let R be an associative ring with unity. An element a ∈ R is said to be r-clean if a = e + r, where e is an idempotent and r is a von Neumann regular element in R. If every element of R is r-clean, then R is called an r-clean ring. In this paper, we investigate the conditions under which the group ring RG is r-clean. We show that if R is a ring and G is a locally finite p-group with p ∈ J(R), then the group ring RG is r-clean if and only if R is r-clean.


Clean rings Strongly J-clean rings Strongly J-clean group rings 

Mathematics Subject Classification

16S34 16Uxx 


  1. Anderson DD, Camillo VP (2002) Commutative rings whose elements are a sum of a unit and an idempotent. Commun Algebra 30(7):3327–3336MathSciNetCrossRefzbMATHGoogle Scholar
  2. Ashrafi N, Nasibi E (2013a) r-Clean rings. Math Rep 15(65):125–132MathSciNetzbMATHGoogle Scholar
  3. Ashrafi N, Nasibi E (2013b) Rings in which elements are the sum of an idempotent and a regular element. Bull Iran Math Soc 39(3):579–588MathSciNetzbMATHGoogle Scholar
  4. Camillo VP, Yu HP (1994) Exchange rings, unit and idempotents. Commun Algebra 22(12):4737–4749MathSciNetCrossRefzbMATHGoogle Scholar
  5. Camillo VP, Khurana D, Lam TY, Nicholson WK, Zhou Y (2006) Continuous modules are clean. J Algebra 304(1):94111MathSciNetCrossRefzbMATHGoogle Scholar
  6. Chen J, Zhou Y (2007) Strongly clean power series rings. Proc Edinb Math Soc 50(1):73–85MathSciNetCrossRefzbMATHGoogle Scholar
  7. Connell IG (1963) On the group ring. Can J Math 15:650–685CrossRefzbMATHGoogle Scholar
  8. Han J, Nicholson WK (2001) Extensions of clean rings. Commun Algebra 29(6):2589–2595MathSciNetCrossRefzbMATHGoogle Scholar
  9. McGovern WW (2006) A characterization of commutative clean rings. Int J Math Game Theory Algebra 15(4):403–413MathSciNetzbMATHGoogle Scholar
  10. Milies CP, Sehgal SK (2002) An introduction to group rings. Kluwer, DordrechtCrossRefzbMATHGoogle Scholar
  11. Nicholson WK (1972) Local group rings. Can Math Bull 15:137–138MathSciNetCrossRefzbMATHGoogle Scholar
  12. Nicholson WK (1977) Lifting idempotent and exchange rings. Trans Am Math Soc 229:269–278MathSciNetCrossRefzbMATHGoogle Scholar
  13. Nicholson WK (1999) Strongly clean rings and Fittings’ lemma. Commun Algebra 27(8):3583–3592MathSciNetCrossRefzbMATHGoogle Scholar
  14. Nicholson WK, Varadarajan K (1998) Countable liner transformations are clean. Proc Am Math Soc 126:61–64CrossRefzbMATHGoogle Scholar
  15. Nicholson WK, Zhou Y (2004) Rings in which elements are uniquely the sum of an idempotent and a unit. Glasg Math J 46(2):227–236MathSciNetCrossRefzbMATHGoogle Scholar
  16. Samei K (2004) Clean elements in commutative reduced rings. Commun Algebra 32(9):3479–3486MathSciNetCrossRefzbMATHGoogle Scholar
  17. Yi Z, Zhou Y (2007) Baer and quasi-Baer properties of group rings. J Aust Math Soc 93:285–296MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Shiraz University 2017

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Mathematics, Statistics and Computer SciencesSemnan UniversitySemnanIran
  2. 2.Shahreza UniversityShahrezaIran

Personalised recommendations