Advertisement

Electrocatalytic Oxidation of Formaldehyde onto Carbon Paste Electrode Modified with Hydrogen Titanate Nanotubes, Including Nickel Hydroxide

  • Seyed Karim Hassaninejad-Darzi
  • Mostafa Rahimnejad
  • Farshad Shajie
  • Amir Hossein Shahbazi Kootenaei
Research Paper

Abstract

In this study, the hydrogen titanate nanotubes (HTNs) with a high specific surface area were applied for modification of carbon paste electrode (CPE). Then, a novel, cheap and efficient catalyst for formaldehyde electrocatalytic oxidation was developed by decorating Ni2+ ions on the surface of the modified electrode. A sensitive oxidation peak was observed at 0.62 V vs. Ag|AgCl|KCl (3 M) in 0.1 M NaOH solution for electrocatalytic oxidation of formaldehyde. It has been observed that HTNs at the surface of CPE can improve catalytic efficiency of the dispersed Ni2+ ions toward oxidation of formaldehyde. The values of electron-transfer coefficient, the mean value of catalytic rate constant, and diffusion coefficient for formaldehyde and redox sites were obtained to be 0.545, 2.65 × 104 cm3 mol−1 s−1, and 3.97 × 10−6 cm2 s−1, respectively. The good catalytic activity, high sensitivity, and easy in preparation rendered the Ni-HTN/CPE to be a capable electrode for electrocatalytic oxidation of formaldehyde.

Graphical abstract

Keywords

Hydrogen titanate nanotube Carbon paste electrode Nickel hydroxide Electrocatalytic oxidation Formaldehyde 

References

  1. Azizi S, Ghasemi S, Yazdani-Sheldarrei H (2013a) Synthesis of mesoporous silica (SBA-16) nanoparticles using silica extracted from stem cane ash and its application in electrocatalytic oxidation of methanol. Int J Hydrogen Energy 38(29):12774–12785CrossRefGoogle Scholar
  2. Azizi SN, Ghasemi S, Chiani E (2013b) Nickel/mesoporous silica (SBA-15) modified electrode: an effective porous material for electrooxidation of methanol. Electrochim Acta 88:463–472CrossRefGoogle Scholar
  3. Bard AJ, Faulkner LR (2001) Fundamentals and applications. Electrochemical methods, 2nd edn. Wiley, New YorkGoogle Scholar
  4. Bode H, Dehmelt K, Witte J (1966) Zur kenntnis der nickelhydroxidelektrode—I. Über das nickel (II)-hydroxidhydrat. Electrochim Acta 11(8):1079–1087CrossRefGoogle Scholar
  5. Cao H, Wang Z, Hou G, Zheng G (2010) TiO 2 nanotube-supported amorphous Ni–B electrode for electrocatalytic oxidation of methanol. Surf Coat Technol 205(3):885–889CrossRefGoogle Scholar
  6. Dai H, Xu H, Wu X, Lin Y, Wei M, Chen G (2010) Electrochemical behavior of thionine at titanate nanotubes-based modified electrode: a sensing platform for the detection of trichloroacetic acid. Talanta 81(4):1461–1466CrossRefGoogle Scholar
  7. El-Shafei A, Elhafeez AA, Mostafa H (2010) Ethanol oxidation at metal–zeolite-modified electrodes in alkaline medium. Part 2: palladium–zeolite-modified graphite electrode. J Solid State Electrochem 14(2):185–190CrossRefGoogle Scholar
  8. Fan K, Luo X, Ping J, Tang W, Wu J, Ying Y, Zhou Q (2012) Sensitive determination of (−)-epigallocatechin gallate in tea infusion using a novel ionic liquid carbon paste electrode. J Agric Food Chem 60(25):6333–6340CrossRefGoogle Scholar
  9. Gosser DK (1993) Cyclic voltammetry: simulation and analysis of reaction mechanisms. VCH, New YorkGoogle Scholar
  10. Habibi B, Delnavaz N (2010) Electrocatalytic oxidation of formic acid and formaldehyde on platinum nanoparticles decorated carbon-ceramic substrate. Int J Hydrogen Energy 35(17):8831–8840CrossRefGoogle Scholar
  11. Hassaninejad-Darzi SK (2014) A novel, effective and low cost catalyst for formaldehyde electrooxidation based on nickel ions dispersed onto chitosan-modified carbon paste electrode for fuel cell. J Electroceram 33(3–4):252–263CrossRefGoogle Scholar
  12. Hassaninejad-Darzi SK (2015) Fabrication of a non-enzymatic Ni (ii) loaded ZSM-5 nanozeolite and multi-walled carbon nanotubes paste electrode as a glucose electrochemical sensor. RSC Adv 5(128):105707–105718CrossRefGoogle Scholar
  13. Hassaninejad-Darzi SK, Rahimnejad M (2014) Electrocatalytic oxidation of methanol by ZSM-5 nanozeolite-modified carbon paste electrode in alkaline medium. J Iran Chem Soc 11(4):1047–1056CrossRefGoogle Scholar
  14. Hassaninejad-Darzi S, Rahimnejad M, Golami-Esfidvajani M (2016) Electrocatalytic oxidation of formaldehyde onto carbon paste electrode modified with nickel decorated nanoporous cobalt-nickel phosphate molecular sieve for fuel cell. Fuel Cells 16(1):89–99CrossRefGoogle Scholar
  15. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1998) Formation of titanium oxide nanotube. Langmuir 14(12):3160–3163CrossRefGoogle Scholar
  16. Kavian S, Azizi SN, Ghasemi S (2016) Preparation of a novel supported electrode comprising a nickel (II) hydroxide-modified carbon paste electrode (Ni (OH) 2-X/CPE) for the electrocatalytic oxidation of formaldehyde. Chin J Catal 37(1):159–168CrossRefGoogle Scholar
  17. Kootenaei AS, Towfighi J, Khodadadi A, Mortazavi Y (2014) Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane. Appl Surf Sci 298:26–35CrossRefGoogle Scholar
  18. Koper M, Hachkar M, Beden B (1996) Investigation of the oscillatory electro-oxidation of formaldehyde on Pt and Rh electrodes by cyclic voltammetry, impedance spectroscopy and the electrochemical quartz crystal microbalance. J Chem Soc Faraday Trans 92(20):3975–3982CrossRefGoogle Scholar
  19. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Inter Electrochem 101(1):19–28CrossRefGoogle Scholar
  20. Luo H, Shi Z, Li N, Gu Z, Zhuang Q (2001) Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. Anal Chem 73(5):915–920CrossRefGoogle Scholar
  21. Manoharan K, Joby N, Venkatachalam P (2014) A novel TiO2 nanoparticles/nanowires composite core with ZrO2 nanoparticles shell coating photoanode for high-performance dye-sensitized solar cell based on different electrolytes. Ionics 20(6):887–896CrossRefGoogle Scholar
  22. Mohan N, Cindrella L (2015) Direct synthesis of Fe-ZSM-5 zeolite and its prospects as efficient electrode material in methanol fuel cell. Mater Sci Semicond Process 40:361–368CrossRefGoogle Scholar
  23. Nagashree K, Ahmed M (2010) Electrocatalytic oxidation of methanol on Ni modified polyaniline electrode in alkaline medium. J Solid State Electrochem 14(12):2307–2320CrossRefGoogle Scholar
  24. Ojani R, Raoof J-B, Zavvarmahalleh SRH (2009) Preparation of Ni/poly (1, 5-diaminonaphthalene)-modified carbon paste electrode; application in electrocatalytic oxidation of formaldehyde for fuel cells. J Solid State Electrochem 13(10):1605–1611CrossRefGoogle Scholar
  25. Ojani R, Raoof J-B, Zamani S (2010) A novel sensor for cephalosporins based on electrocatalytic oxidation by poly (o-anisidine)/SDS/Ni modified carbon paste electrode. Talanta 81(4):1522–1528CrossRefGoogle Scholar
  26. Ojani R, Raoof J-B, Safshekan S (2012) Electrocatalytic oxidation of formaldehyde on nickel modified ionic liquid carbon paste electrode as a simple and efficient electrode. J Appl Electrochem 42(2):81–87CrossRefGoogle Scholar
  27. Ojani R, Raoof J-B, Ahmady-Khanghah Y, Safshekan S (2013) Copper-poly (2-aminodiphenylamine) composite as catalyst for electrocatalytic oxidation of formaldehyde in alkaline media. Int J Hydrogen Energy 38(13):5457–5463CrossRefGoogle Scholar
  28. Pletcher D, Greff R, Peat R, Peter L, Robinson J (2001) Instrumental methods in electrochemistry. Elsevier, AmsterdamCrossRefGoogle Scholar
  29. Pótári G, Madarász D, Nagy L, László B, Sápi A, Oszkó A, Kukovecz A, Erdohelyi A, Kónya Z, Kiss J (2013) Rh-induced support transformation phenomena in titanate nanowire and nanotube catalysts. Langmuir 29(9):3061–3072CrossRefGoogle Scholar
  30. Raoof J-B, Omrani A, Ojani R, Monfared F (2009) Poly (N-methylaniline)/nickel modified carbon paste electrode as an efficient and cheep electrode for electrocatalytic oxidation of formaldehyde in alkaline medium. J Electroanal Chem 633(1):153–158CrossRefGoogle Scholar
  31. Raoof J-B, Ojani R, Abdi S, Hosseini SR (2012) Highly improved electrooxidation of formaldehyde on nickel/poly (o-toluidine)/Triton X-100 film modified carbon nanotube paste electrode. Int J Hydrogen Energy 37(3):2137–2146CrossRefGoogle Scholar
  32. Raoof J-B, Hosseini SR, Rezaee S (2015) A simple and effective route for preparation of platinum nanoparticle and its application for electrocatalytic oxidation of methanol and formaldehyde. J Mol Liq 212:767–774CrossRefGoogle Scholar
  33. Samadi-Maybodi A, Nejad-Darzi SKH, Ganjali MR, Ilkhani H (2013) Application of nickel phosphate nanoparticles and VSB-5 in the modification of carbon paste electrode for electrocatalytic oxidation of methanol. J Solid State Electrochem 17(7):2043–2048CrossRefGoogle Scholar
  34. Sang L-X, Zhi-Yu Z, Guang-Mei B, Chun-xu D, Chong-Fang M (2012) A photoelectrochemical investigation of the hydrogen-evolving doped TiO2 nanotube arrays electrode. Int J Hydrogen Energy 37(1):854–859CrossRefGoogle Scholar
  35. Sano N, Matsuoka S, Tamon H (2014) Purification of titanate nanotubes using a mesh-stacked dielectrophoretic separator equipped with carbon nanotube electrodes. Chem Eng Sci 108:188–193CrossRefGoogle Scholar
  36. Velázquez-Palenzuela A, Centellas F, Garrido JA, Arias C, Rodríguez RM, Brillas E, Cabot P-L (2011) Kinetic analysis of carbon monoxide and methanol oxidation on high performance carbon-supported Pt–Ru electrocatalyst for direct methanol fuel cells. J Power Sources 196(7):3503–3512CrossRefGoogle Scholar
  37. Vilas-Boas M, Freire C, De Castro B, Hillman A (1998) Electrochemical characterization of a novel salen-type modified electrode. J Phys Chem B 102(43):8533–8540CrossRefGoogle Scholar
  38. Wang Y, Chen J, Zhou C, Zhou L, Kong Y, Long H, Zhong S (2014) A novel self-cleaning, non-enzymatic glucose sensor working under a very low applied potential based on a Pt nanoparticle-decorated TiO2 nanotube array electrode. Electrochim Acta 115:269–276CrossRefGoogle Scholar
  39. Xing L, Jia J, Wang Y, Zhang B, Dong S (2010) Pt modified TiO2 nanotubes electrode: preparation and electrocatalytic application for methanol oxidation. Int J Hydrogen Energy 35(22):12169–12173CrossRefGoogle Scholar
  40. Yan R-W, Jin B-K (2013) Study of the electrochemical oxidation mechanism of formaldehyde on gold electrode in alkaline solution. Chin Chem Lett 24(2):159–162MathSciNetCrossRefGoogle Scholar
  41. Yi Q, Niu F, Yu W (2011) Pd-modified TiO2 electrode for electrochemical oxidation of hydrazine, formaldehyde and glucose. Thin Solid Films 519(10):3155–3161CrossRefGoogle Scholar
  42. Yu Y, Su W, Yuan M, Fu Y, Hu J (2015) Electrocatalytic oxidation of formaldehyde on nickel ion implanted-modified indium tin oxide electrode. J Power Sources 286:130–135CrossRefGoogle Scholar
  43. Zeng L, Song W, Li M, Zeng D, Xie C (2014) Catalytic oxidation of formaldehyde on surface of H TiO2/H C TiO2 without light illumination at room temperature. Appl Catal B Environ 147:490–498CrossRefGoogle Scholar
  44. Zhu Z, Wu R-J (2015) The degradation of formaldehyde using a Pt@ TiO2 nanoparticles in presence of visible light irradiation at room temperature. J Taiwan Inst Chem E 50:276–281CrossRefGoogle Scholar

Copyright information

© Shiraz University 2017

Authors and Affiliations

  • Seyed Karim Hassaninejad-Darzi
    • 1
  • Mostafa Rahimnejad
    • 2
  • Farshad Shajie
    • 1
  • Amir Hossein Shahbazi Kootenaei
    • 3
  1. 1.Department of Chemistry, Faculty of ScienceBabol Noshirvani University of TechnologyBabolIran
  2. 2.Biofuel and Renewable Energy Research Center, Faculty of Chemical EngineeringBabol Noshirvani University of TechnologyBabolIran
  3. 3.Department of Chemical Engineering, Mahshahr BranchIslamic Azad UniversityMahshahrIran

Personalised recommendations