Skip to main content

Theoretical Calculation of Thermodynamic and Kinetic Quantities for 1,3 Dipolar Cycloaddition Reactions Between Nitrile Sulfides R–CNS (R = H, CH3, Ph and Ph(CH3)3) with 7–10 Membered Simple Cycloalkynes

Abstract

The 1,3-dipolar cycloaddition reactions also known as the Huisgen cycloaddition are one of the most widely used and versatile preparative methods in hetrocyclic chemistry. In this study, the reactivity and strain energy effect of the simple cycloalkynes with substituted Nitrile sulfides R–CNS (R = H, CH3, Ph and Ph(CH3)3) will be discussed in light of computational studies using DFT methods (B3LYP/6-31G*). The investigation of the structured properties, theoretical thermodynamic and kinetic data of the reactions in 298 K will be presented. The results show increase in the ∆G* by increasing the ring size and decreasing the strain energy of cycloalkynes. Also, the rate constants and the free energy changes in reactions increase as the size of the ring decreases. The relationships of the deviation of the internal bond angle (DIBA, in degrees), π-strain (S π ) (in kcal mol−1), the bond angle of Csp3–C ≡ C (θº) and ΔG #(kcal mol−1) for the series of cycloalkynes I-1 to I-4 have investigated.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Bak B, Christianseen JJ, Nieleen OJ, Svanholt H (1977) Acta Chem Scand A31:666

    Article  Google Scholar 

  • Carey FA, Sundberg RJ (2007) Advanced organic chemistry, 5th edn. Springer Science, New York

    Google Scholar 

  • Dirks AJ, van Berkel SS, Hatzakis NS, Opsteen JA, van Delft FL, Cornelissen JJLM, Rowan AE, van Hest JCM, Rutjes FPJT, Nolte RJM (2005) Chem Commun 33:4172–4174 (and the literature cited there in)

    Article  Google Scholar 

  • Domingo LR, Pe´rez P, Contreras R (2006) Eur J Org Chem 2:498–506

    Article  Google Scholar 

  • Ess DH, Houk KN (2008) J Am Chem Soc 130:10187–10198

    Article  Google Scholar 

  • Ess DH, Jones GO, Houk KN (2006) Adv Synth Catal 348:2337–2361

    Article  Google Scholar 

  • Ess DH, Hayden AE, Kla¨rner FG, Houk KN (2008) J Org Chem 73:7586–7759

    Article  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, PomelliC Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98 Revision A.7. Gaussian Inc., Pittsburgh

    Google Scholar 

  • Huisgen R (1961) Cenetary lecture-1,3-dipolar cycloadditions. In: Proceedings of the chemical society of London, p 357

  • Huisgen R (1963) Angew Chem Int Ed 2(10):565–598

    Article  Google Scholar 

  • Huisgen R, Hauck H, Gashey R, Seidl H (1968a) Chem Ber 101:2568–2584

    Article  Google Scholar 

  • Huisgen R, Gashey R, Hauck H, Seidl H (1968b) Chem Ber 101:2548–2558

    Article  Google Scholar 

  • Huisgen R, Gashey R, Hauck H (1968c) Seidl H Chem Ber 101:2559–2567

    Article  Google Scholar 

  • Johnson RP, Daoust KJ (1995) J Am Chem Soc 117:362

    Article  Google Scholar 

  • Lan Y, Zou L, Cao Y, Houk KN (2011) J Phys Chem A 115:13906–13920

    Article  Google Scholar 

  • McQuarrie DA, Simon JD (1999) Physical chemistry. University Science Books, Sausalito

    MATH  Google Scholar 

  • Patton GC (2004) Development and applications of click chemistry. http://www.chemistry.illinois.edu/research/organic/seminar_extracts/2004_2005/08_patton_abstract.pdf. Accessed 8 Nov 2004. (and the literature cited there in)

  • Sakai S, Nguyen MT (2004) J Phys Chem A 108(42):9169–9179

    Article  Google Scholar 

  • Taherpour AA, Faraji M (2008) Molbank M 577

  • Taherpour AA, Kheradmand K (2009) J Heterocyclic Chem 46:131–133

    Article  Google Scholar 

  • Taherpour AA, Kvaskoff D, Bernhardt PV, Wentrup C (2010) J Phys Org Chem 23:382–389

    Google Scholar 

  • Taherpour AA, Shfeei H, Rajaeian E (2011) Orient J Chem 27(3):885–893

    Google Scholar 

  • Taherpour AA, Rajaeian E, Shafiei H, Malekdar M (2013) Struct Chem 24(2):523–534

    Article  Google Scholar 

  • Van Steenis DJVC, David ORP, van Strijdonck GPF, van Maarseveen JH (2005) Reek JNH Chem Commun 34:4333–4335

    Article  Google Scholar 

  • Vollhardt KPC (1987) Organic chemistry. W. H. Freeman & Company, New York

    Google Scholar 

  • Xu L, Doubleday CE (2010) Houk KN J Am Chem Soc 132:3029–3037

    Article  Google Scholar 

Download references

Acknowledgments

The corresponding author gratefully acknowledges from Theoretical and Computational Research Center of Chemistry Faculty of Razi University-Kermanshah-Iran, The authors gratefully acknowledge the Medical Biology Research Center and Kermanshah University of Medical Sciences, Kermanshah.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avat Arman Taherpour.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rajaeian, E., Mirzaei, E. & Taherpour, A.A. Theoretical Calculation of Thermodynamic and Kinetic Quantities for 1,3 Dipolar Cycloaddition Reactions Between Nitrile Sulfides R–CNS (R = H, CH3, Ph and Ph(CH3)3) with 7–10 Membered Simple Cycloalkynes. Iran J Sci Technol Trans Sci 41, 1139–1148 (2017). https://doi.org/10.1007/s40995-016-0053-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-016-0053-4

Keywords

  • Isothiazole
  • Cycloalkynes
  • Nitrile sulfide
  • 1,3-dipolar cycloaddition reaction
  • DFT-B3LYP
  • Molecular orbital calculations
  • Ab initio