Skip to main content

Advertisement

Log in

Anticarcinogenicity and Toxicity of Organotin(IV) Complexes: A Review

  • Review Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

The excellent anticarcinogenicity and toxicity of organotin(IV) complexes of certain acrylates, methylenedioxyphenylpropenoic acid, piperonylic acid, phenylethanoates, carboxylic acid, acetic acid, benzohydroxamato, peptides, dipeptides, benzoates, schiff bases, xylene, nicotinic acid, pyrimidine, and aminoalcohols have been reviewed here. The high cytotoxic activity of complexes is affected by (1) the availability of coordination positions at Sn and (2) the occurrence of relatively stable ligand–Sn bonds, e.g., Sn–N and Sn–S, and which result in less hydrolytic decomposition. Furthermore, the lipophilicity due to the presence of the number of carbon atoms in the organotin moiety of organotin(IV) complexes warranted its impressive antitumor activity and cytotoxicity. The cytotoxic activity exhibited by [Ph3Sn(Meclo)] against L-929, A-549, and T24 cell lines shows that the coupling of meclofenamic acid to SnPh3(IV) metal center results in a metallic complex with important biological properties and remarkable cytotoxic activity, since it exhibits IC50 values in a micromolar range better to that of the antitumor drug cisplatin. However, it is observed during biological testing that the major role is attributed to the alkyl/aryl groups attached to tin atom, while ligands play secondary role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas S, Ali S, Khan MS, Parvez M, Iqbal J (2013) Synthesis, crystal structure, enzyme inhibition, DNA protection, and antimicrobial studies of di- and triorganotin(IV) derivatives of 2-thiopheneacetic acid. J Coord Chem 66(15):2765–2774

    Google Scholar 

  • Ahmad MS, Hussain M, Hanif M, Ali S, Qayyum M, Mirza B (2008) Di- and triorganotin(IV) esters of 3,4-methylenedioxyphenylpropenoic acid: synthesis, spectroscopic characterization and biological screening for antimicrobial, cytotoxic and antitumor activities. Chem Biol Drug Des 71(6):568–576

    Google Scholar 

  • Ai CS, Baul TSB, Chatterjee A (2002) Antiproliferative and cytotoxic effect of a novel organotin compound on mammalian cells both in vitro and in vivo. Mutation Res. 513(1–2):49–59

    Google Scholar 

  • Alama A, Tasso B, Novelli F, Sparatore F (2009) Organometallic compounds in oncology: implications of novel organotins as antitumor agents. Drug Discov Today 14:500–508

    Google Scholar 

  • Aldridge WN (1958) The biochemistry of organotin compounds: trialkyltins and oxidative phosphorylation. Biochem J 69(3):367–376

    Google Scholar 

  • Aldridge WN, Casida JE, Fish RH, Kimmel EC, Street BW (1977a) Action on mitochondria and toxicity of metabolites of tri-n-butyltin derivatives. Biochem Pharmacol 26(21):1997–2000

    Google Scholar 

  • Aldridge WN, Street BW, Skilleter DN (1977b) Oxidative phosphorylation: halide-dependent and halide-independent effects of triorganotin and trioganolead compounds on mitochondrial functions. Biochem J 168(3):353–364

    Google Scholar 

  • Arakawa Y (2000) Invasion of biofunctions by organotins-Immune system, brain nervous system and endocrine system. Biomed Res Trace Elem 11:259–286

    Google Scholar 

  • Barbieri F, Sparatore F, Cagnoli M, Bruzzo C, Novelli F, Alama A (2001) Antiproliferative activity and interactions with cell-cycle related proteins of the organotin compound triethyltin(IV)lupinylsulfide hydrochloride. Chem Biol Interact 134(1):27–39

    Google Scholar 

  • Baul TSB (2008) Antimicrobial activity of organotin(IV) compounds: a review. Appl Organomet Chem 22(4):195–204

    Google Scholar 

  • Baul TSB, Masharing C, Ruisi G, Jirásko R, Holcapek M, Vos DD, Wolstenholme D, Linden A (2007) Self-assembly of extended Schiff base amino acetate skeletons, 2-{[(2Z)-(3-hydroxy-1-methyl-2-butenylidene)]amino}phenylpropionate and 2-{[(E)-1-(2-hydroxyaryl)alkylidene]amino}phenylpropionate skeletons incorporating organotin(IV) moieties: synthesis, spectroscopic characterization, crystal structures, and in vitro cytotoxic activity. J Organomet Chem 692:4849–4862

    Google Scholar 

  • Baul TSB, Basu S, Vos DD, Linden A (2009) Amino acetate functionalized Schiff base organotin(IV) complexes as anticancer drugs: synthesis, structural characterization, and in vitro cytotoxicity studies. Invest New Drugs 27:419–431

    Google Scholar 

  • Baul TSB, Paul A, Pellerito L, Scopelliti M, Duthie A, Vos DD, Verma RP, Englert U (2012) An in vitro comparative assessment with a series of new triphenyltin(IV) 2-/4-[(E)-2-(aryl)-1-diazenyl]benzoates endowed with anticancer activities: structural modifications, analysis of efficacy and cytotoxicity involving human tumor cell lines. J Inorg Biochem 107:119–128

    Google Scholar 

  • Blunden SJ, Patel BN, Smith PJ, Sugavanam B (1987) Synthesis, 119Sn NMR and Mössbauer studies and bioassay data of o-tricyclohexylstannyl derivatives of substituted 8-hydroxyquinolines. Appl Organomet Chem 1(3):241–244

    Google Scholar 

  • Buck-Koehntop BA, Porcelli PL, Lewin J (2006) Biological chemistry of organotin compounds: interactions and dealkylation by dithiols. J Organomet Chem 691(8):1748–1755

    Google Scholar 

  • Buzas NN, Gajda T, Kuzmann E, Vertes A, Burger K (1995) Coordination properties of l-cysteine and its derivatives towards dietethyltin (IV) in aqueous solution. Main Group Met Chem 11:641–649

    Google Scholar 

  • Champ MA, Seligman PF (1996) Research information requirements associated with the environmental fate and effects of organotin compounds. In: Champ MA, Seligman PF (eds) Organotin: environmental fate and effects. Chapman & Hall, London, pp 601–614

    Google Scholar 

  • Chandrasekhar V, Singh P, Gopal K (2008) Organotin carboxylate and sulfonate clusters. In: Davies AG, Gielen M, Pannell KH, Tiekink ERT (eds) Tin chemistry, fundamentals, frontiers, and applications. Wiley, Chichester

    Google Scholar 

  • Chikahisa L, Oyama Y (1992) Tri-n-butyltin Increases Intracellular Ca2+ in mouse thymocytes: a flow-cytometric study using fluorescent dyes for membrane potential and intracellular Ca2+. Pharmacol Toxicol 71(3):190–195

    Google Scholar 

  • Cima F, Ballarin L (1999) TBT-induced apoptosis in tunicate haemocytes. Appl Organomet Chem 13:697–703

    Google Scholar 

  • Costa LG, Sulaiman R (1986) Inhibition of protein synthesis by trimethyltin. Toxicol Appl Pharmacol 86:189–196

    Google Scholar 

  • Crowe AJ (1988) In: Metal-based antitumor drugs. In: Gielen M (ed) Freund, London

  • Davies AG, Smith PJ (1980) In: Advances in inorganic chemistry and radiochemistry, vol 23. Academic Press, New York

  • Davies AG, Gielen M, Pannell KH, Tiekink ERT (2008) Fundamentals in tin chemistry, chapter 2. In: Tin chemistry fundamentals, applications and frontiers. Wiley, UK

  • Demertzi DK, Dokorou VN, Jasinski JP, Polski A, Wiecek J, Zervou M, Demertzis MA (2005) Organotin flufenamates: synthesis, characterization and antiproliferative activity of organotin flufenamates. J Organomet Chem 690:1800–1806

    Google Scholar 

  • Demertzi DK, Dokorou V, Primikiri A, Vargas R, Silvestru C, Russo U, Demertzis MA (2009) Organotin meclofenamic complexes: synthesis, crystal structures and antiproliferative activity of the first complexes of meclofenamic acid—novel anti-tuberculosis agents. J Inorg Biochem 103:738–744

    Google Scholar 

  • Ding W, Liu Z, Tian L, Quan X (2012) Synthesis, characterization, and in vitro cytotoxicity of triorganotin 3,5-di-tert-butyl-4-hydroxybenzoates. Synth React Inorg Met-Org Nano Met Chem 42:82–87

    Google Scholar 

  • Dokorou V, Demertzi DK, Jasinski JP, Galani A, Demertzis MA (2004) Synthesis, spectroscopic studies, and crystal structures of phenyl organotin derivatives with [bis(2,6-dimethylphenyl)amino]benzoic acid: novel antituberculosis agents. Helv Chim Acta 87:1940–1950

    Google Scholar 

  • Dokorou V, Primikiri A, Demertzi DK (2011) The triphenyltin(VI) complexes of NSAIDs and derivatives: synthesis, crystal structure and antiproliferative activity: potent anticancer agents. J Inorg Biochem 105:195–201

    Google Scholar 

  • Dylag M, Pruchnik H, Pruchnik F, Skrobek GM, Laszewski SU (2010) Antifungal activity of organotin compounds with functionalized carboxylates evaluated by the microdilution bioassay in vitro. Med Mycol 48:373–383

    Google Scholar 

  • Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 393:43–50

    Google Scholar 

  • Ge R, Ma WH, Li YL, Li QS (2013) Apoptosis induced neurotoxicity of di-n-butyl-di-(4-chlorobenzohydroxamato) tin (IV) via mitochondria-mediated pathway in PC12 cells. Toxicol In Vitro 27:92–102

    Google Scholar 

  • Gennari A, Vivani B, Galli CL, Marinovich M, Pieters R, Corsini E (2000) Organotins induce apoptosis by disturbance of [Ca2+] and mitochondrial activity, causing oxidative stress and activation of caspases in rat thymocytes. Toxicol Appl Pharmacol 169:185–190

    Google Scholar 

  • Gielen M, Tiekink ERT (2005) Metallotherapeutic drugs and metal-based diagnostic agents. The use of metals in medicine. Wiley, USA

    Google Scholar 

  • Girasolo MA, Attanzio A, Sabatino P, Tesoriere L, Rubino S, Stocco G (2014) Organotin(IV) derivatives with 5,7-disubstituted-1,2,4-triazolo[1,5-a]pyrimidine and their cytotoxic activities: the importance of being conformers. Inorg Chim Acta 423:168–176

    Google Scholar 

  • Gomez E, Ordonez GC, Apan TR (2006) Synthesis, characterization and in vitro cytotoxicity of pentacoordinated tin(IV) complexes derived from amino alcohols. Chem Pharm Bull 54:54–57

    Google Scholar 

  • Gómez-Ruiz S, Kaluderovic GN, Prashar S, Hawkins EH, Eric A, Zizak Z, Juranic ZD (2008) Study of the cytotoxic activity of di and triphenyltin(IV) carboxylate complexes. J Inorg Biochem 102:2087–2096

    Google Scholar 

  • Hadjikakou S, Hadjiliadis N (2009) Antiproliferative and anti-tumor activity of organotin compounds. Coord Chem Rev 253(1–2):235–249

    Google Scholar 

  • Hanif M, Hussain M, Ali S, Bhatti MH, Ahmed MS, Mirza B, Evans HS (2007) Synthesis, spectroscopic investigation, crystal structure, and biological screening, including antitumor activity, of organotin(IV) derivatives of piperonylic acid. Turk J Chem 31:349–361

    Google Scholar 

  • Hanif M, Hussain M, Ali S, Bhatti MH, Ahmed MS, Mirza B, Evans HS (2010) In vitro biological studies and structural elucidation of organotin(IV) derivatives of 6-nitropiperonylic acid: crystal structure of {[(CH2O2C6H2(o-NO2)COO)SnBu2]2O}2. Polyhedron 29(1):613–619

    Google Scholar 

  • Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Ann Rev Biochem 54:1015–1069

    Google Scholar 

  • Ho BYK, Zuckerman JJ (1973) Trialkyltin derivatives of amino acids and dipeptides. Inorg Chem 12(7):1552–1561

    Google Scholar 

  • Hussain M, Hanif M, Ali S, Shahzadi S, Evans HS (2008) Synthesis, X-ray structure, and bioassay of newly synthesized trimethyltin(IV) 2,3-methylenedioxy benzoate. Turk J Chem 32:5–33

    Google Scholar 

  • Hussain M, Ahmad MS, Siddique A, Hanif M, Ali S, Mirza B (2009a) Dimethyltin(IV) derivatives of biologically potent substituted phenylacrylic acids: synthesis, chemical characterization and inhibitory effects on Agrobacterium tumefaciens. Chem Biol Drug Des 74(2):183–189

    Google Scholar 

  • Hussain M, Hanif M, Ali S, Shahzadi S, Ahmad MS, Mirza B, Evans HS (2009b) Synthesis and coordination chemistry of organotin(IV) complexes of 2,3-methylenedioxyphenylpropenoic acid. J Coord Chem 62(13):2229–2238

    Google Scholar 

  • Hussain M, Ahmad MS, Hanif M, Ali S, Mirza B (2010a) Structure elucidation and inhibitory effects of self-assembled organotin(IV) esters of p-tolyl acetic acid on bacterial, fungal, brine shrimp, and potato tumor cells. Drug Chem Toxicol 33:183–192

    Google Scholar 

  • Hussain M, Hanif M, Ali S, Shahzadi S, Ahmad MS, Mirza B, Evans HS (2010b) In vitro antitumor and antibacterial assay of organotin(IV) complexes of 2,3-methylenedioxybenzoic acid; X-ray crystal structure of [(C2H5)2Sn(C8H5O4)2]. J Iran Chem Soc 7:155–163

    Google Scholar 

  • Hussain M, Rehman ZU, Hanif M, Altaf M, Rehman AU, Ali S, Cavell KJ (2011) Structural studies of diethyltin(IV) derivatives and their biological aspects as potential antitumor agents against Agrobacterium tumefacien cells. Appl Organomet Chem 25(6):412–419

    Google Scholar 

  • Hussain H, Bibi N, Harrasi AA, Siddiqi S, Kazmi SU, Zhang Y, Badshah A (2012) Antituberculosis and cytotoxic activities of triorganotin(IV) complexes. Chin Chem Lett 23:731–735

    Google Scholar 

  • Hussain S, Ali S, Shahzadi S, Tahir MN, Shahid M (2015) Synthesis, characterization, biological activities, crystal structure and DNA binding of organotin(IV) 5-chlorosalicylates. J Coord Chem 68(14):2369–2387

    Google Scholar 

  • Iqbal H, Ali S, Shahzadi S (2015a) Antituberculosis study of organotin(IV) complexes: a review. Cogent Chem 1(1):1–12

    Google Scholar 

  • Iqbal H, Ali S, Shahzadi S, Sharma SK, Qanungo K, Shahid M (2015b) Synthesis and characterization of hetero-bimetallic complexes with 2-mercapto-5-methyl-benzimidazole: theoretical study and biological activities. J Coord Chem 68:2434–2448

    Google Scholar 

  • Jabbar S, Shahzadi I, Rehman R, Iqbal H, Ain QU, Jamil A, Kousar R, Ali S, Shahzadi S, Choudhary MA, Shahid M, Khan QM, Sharma KS, Qanungo K (2012) Synthesis, characterization, semi-empirical study, and biological activities of organotin(IV) complexes with cyclohexylcarbamodithioic acid as biological active ligand. J Coord Chem 65:572–590

    Google Scholar 

  • James BD, Gioskos S, Chandra S, Magee RJ, Cashion JD (1992) Some triphenyltin(IV) complexes containing potentially bidentate, biologically active anionic groups. J Organomet Chem 436(2):155–167

    Google Scholar 

  • Johnson DR, Neill BPO (2012) Glioblastoma survival in the United States before and during the temozolomide era. J Neuro Oncol 107(2):359–364

    Google Scholar 

  • Kampa M, Alexaki VI, Notas G, Nifli AP, Nistikaki A, Hatzoglou A, Bakogeorgou E, Kouimtzoglou E, Blekas G, Boskou D, Gravanis A, Castana E (2004) Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action. Breast Cancer Res 6:63–74

    Google Scholar 

  • Kang W, Wu X, Huang J (2009) Synthesis, crystal structure and biological activities of four novel tetranuclear di-organotin(IV) carboxylates. J Organomet Chem 694:2402–2408

    Google Scholar 

  • Kannan K, Jain SK (2000) Oxidative stress and apoptosis. Pathophysiology 7:153–163

    Google Scholar 

  • Kemmer M, Gielen M, Biesemans M, de Vos D, Willem R (1998) Synthesis, characterization and in vitro antitumour activity of di-n-butyl, tri-n-butyl, and triphenyltin 3,6-dioxaheptanoates and 3,6,9-trioxadecanoates. Metal Based Drugs 5(4):189–196

    Google Scholar 

  • Khan N, Farina Y, Mun LK, Rajab NF, Awang N (2014) Triorganotin(IV) complexes with o-substituted arylhydroxamates: synthesis, spectroscopic characterization, X-ray structures and in vitro cytotoxic activities. J Organomet Chem 763–764:26–33

    Google Scholar 

  • Koch B, Baul TSB, Chatterjee A (2008) Cell proliferation inhibition and antitumor activity of novel alkyl series of diorganotin(IV) compounds. J Appl Toxicol 28(4):430–438

    Google Scholar 

  • Kovala-Demertzi DK, Dokorou V, Ciunik Z, Kourkoumelis N, Demertzis AM (2002) Organotin mefenamic complexes-preparations, spectroscopic studies and crystal structure of a triphenyltin ester of mefenamic acid: novel anti-tuberculosis agents. Appl Organomet Chem 16:360–368

    Google Scholar 

  • Kuo LY, Kanatzidis MG, Sabat M, Tipton AL, Marks TJ (1991) Metallocene antitumor agents. Solution and solid-state molybdenocene coordination chemistry of DNA constituents. J Am Chem Soc 113:9027–9045

    Google Scholar 

  • Lee RF (1985) Metabolism of tributyltin oxide by crabs, oysters and fish. Mar Environ Res 17:145–148

    Google Scholar 

  • Lee SM, Sim KS, Lo KM (2015) Synthesis, characterization and biological studies of diorganotin(IV) complexes with tris[(hydroxymethyl)aminomethane] schiff bases. Inorg Chim Acta 429:195–208

    Google Scholar 

  • Li Q, Yang P, Wang H, Guo M (1996) Diorganotin(IV) antitumor agent. (C2H5)2SnCl2 (phen)/nucleotides aqueous and solid-state coordination chemistry and its DNA binding studies. J Inorg Biochem 64:181–195

    Google Scholar 

  • Li Y, Guo P, Lin N, Li Q (2014) Pharmacokinetics of di-phenyl-di-(2,4-dichlorbenzohydroxamato) tin(IV): a new metal-based candidate with promising antitumor activity in rats. Inorg Chim Acta 423:235–241

    Google Scholar 

  • Ma CL, Han YW, Zhang RF (2006) Synthesis and crystal structures of di- and triorganotin(IV) derivatives with 2,4,5-trifluoro-3-methoxybenzoic acid. Polyhedron 25:235–249

    Google Scholar 

  • Marinovich M, Viviani B, Galli CL (1990) Reversibility of tributyltin-chloride-induced protein synthesis inhibition after ATP recovery in HEL-30 cells. Toxicol Lett 52:311–317

    Google Scholar 

  • Meir EGV, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ (2010) Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. Cancer J Clin 60(3):166–193

    Google Scholar 

  • Molloy KC, Purcell TG, Cunningham D, McCardle P, Higgins T (1987) Organotin biocides: X. Synthesis, structure and biocidal activity of organotin derivatives of 2-mercaptobenzothiazole, 2-mercaptobenzoxazole and 2-mercaptobenzimidazole. Appl Organomet Chem 1(2):119–131

    Google Scholar 

  • Molly KC (1998) In: Smith PJ (ed) Chemistry of tin, 2nd edn. Blackie, London

  • Muhammad N, Rehman ZU, Ali S, Meetsma A, Shaheen F (2009) Organotin(IV) 4-methoxyphenylethanoates: synthesis, spectroscopic characterization, X-ray structures and in vitro anticancer activity against human prostate cell lines (PC-3). Inorg Chim Acta 362(8):2842–2848

    Google Scholar 

  • Muhammad N, Shah A, Rehman ZU, Shuja S, Ali S, Qureshi R, Meetsma A, Tahir MN (2013) Organotin(IV) 4-nitrophenylethanoates: synthesis, structural characteristics and intercalative mode of interaction with DNA. J Organomet Chem 694(21):3431–3437

    Google Scholar 

  • Murthy HMK, Vijayan M (1981) Structural studies of analgesics and their interactions. 8. Rotational-isomerism and disorder in the crystal-structure of meclofenamic acid. Acta Cryst B 37:1102–1105

    Google Scholar 

  • Nath M, Yadav R, Eng G, Musingarimi P (1999) Characteristic spectral studies and in vitro antimicrobial and in vivo multi-infection antifungal activities in mice of new organotin(IV) derivatives of heterocyclic amino acids. Appl Organomet Chem 13:29–37

    Google Scholar 

  • Nath M, Pokharia S, Yadav R (2001) Organotin(IV) complexes of amino acids and peptides. Coord Chem Rev 215:99–149

    Google Scholar 

  • Nath M, Pokharia S, Eng G, Song X, Kumar A (2003a) Comparative study of structure–activity relationship of di- and tri-organotin(IV) derivatives of amino acid and peptides. J Organomet Chem 699:109–123

    Google Scholar 

  • Nath M, Pokharia S, Song X, Eng G, Gielen M, Kemmer M, Biesemans M, Willem R, de Vos D (2003b) New organotin(IV) derivatives of dipeptides as models for metal–protein interactions: in vitro anti-tumour activity. Appl Organomet Chem 17(5):305–314

    Google Scholar 

  • Nath M, Pokharia S, Eng G, Song X, Kumar A (2006) New triorganotin(IV) derivatives of dipeptides as models for metal–protein interactions: synthesis, structural characterization and biological studies. Spectrochim Acta Part A 63:66–75

    Google Scholar 

  • Nath M, Vats M, Roy P (2013) Tri- and diorganotin(IV) complexes of biologically important orotic acid: synthesis, spectroscopic studies, in vitro anti-cancer, DNA fragmentation, enzyme assays and in vivo anti-inflammatory activities. Eur J Med Chem 59:310–321

    Google Scholar 

  • Nath M, Vats M, Roy P (2014) Design, spectral characterization, anti-tumor and anti-inflammatory activity of triorganotin(IV) hydroxycarboxylates, apoptosis inducers: in vitro assessment of induction of apoptosis by enzyme, DNA-fragmentation, acridine orange and comet assays. Inorg Chim Acta 423:70–82

    Google Scholar 

  • Nielsen JB, Rasmussen TH (2004) Antiproliferative effect of butyltin in MCF-7 cells. Environ Res 96(3):305–310

    Google Scholar 

  • Orrenius S, Cabe MJM, Jr MJ, Nicotera P (1992) Ca2+-dependent mechanisms of cytotoxicity and programmed cell death. Toxicol Lett 64–65:357–364

    Google Scholar 

  • Oyama Y, Chikahisa L, Noda K, Hayashi H, Tomyoshi F (1992) Characterization of the triphenyltin-induced increase in intracellular Ca2+ of mouse thymocytes: comparison with the action of A23187. J Pharmacol 60(3):159–167

    Google Scholar 

  • Oyama Y, Ueha T, Hayashi A, Chikahisa L (1994) Effect of tri-n-butyltin on intracellular Ca2+ concentration of mouse thymocytes under Ca2+-free condition. Eur J Pharmacol 4(2–3):137–142

    Google Scholar 

  • Pellerito C, Nagy L, Pellerito L, Szorcsik A (2006) Biological activity studies on organotin(IV)n+ complexes and parent compounds. J Organomet Chem 691(8):1733–1747

    Google Scholar 

  • Pettinari C, Marchetti F (2008) Chemical and biomedical developments in organotin cancer chemotherapy. In: Davies AG, Gielen M, Pannell KH, Tiekink ERT (eds) Tin chemistry, fundamentals, frontiers and applications. Wiley, Chichester

    Google Scholar 

  • Powers MF, Beavis AD (1991) Triorganotins inhibit the mitochondrial inner membrane anion channel. J Biol Chem 266:17250–17256

    Google Scholar 

  • Pruchnik H, Lis T, Latocha M, Zielinska A, Laszewski SU, Pelinska I, Pruchnik FP (2012) Butyltin(IV) 2-sulfobenzoates: synthesis, structural characterization and their cytostatic and antibacterial activities. J Inorg Biochem 111:25–32

    Google Scholar 

  • Pruchnik H, Latocha M, Zielinska A, Laszewski SU, Pruchnik FP (2013) Butyltin(IV) 5-sulfosalicylates: structural characterization and their cytostatic activity. Polyhedron 49:223–233

    Google Scholar 

  • Pruchnik H, Lis T, Latocha M, Zielinska A, Pruchnik FP (2015) Novel organotin complexes containing the 2,2′-bipyridine-3,3′,6,6′-tetracarboxylate: helical supramolecular structure and cytostatic activity. J Organomet Chem 777:81–87

    Google Scholar 

  • Pruet H, Vornefeld M, Huber F (1991) Bis[di-ethyl(glycylhistidinato)tin]–methanol (1/1). Acta Cryst. Sect. C. 47:264–267

    Google Scholar 

  • Qureshi QAH, Nadhman A, Sirajuddin M, Shahnaz G, Ali S, Shah A, Yasinzai MM (2014) Organotin(IV) complexes of carboxylate derivative as potential chemotherapeutic agents against Leishmania. Inorg Chim Acta 423:220–228

    Google Scholar 

  • Raffray M, Cohen GM (1993) Thymocyte apoptosis as a mechanism for tributyltin-induced thymic atrophy in vivo. Arch Toxicol 67(4):231–236

    Google Scholar 

  • Ray D, Sarma KD, Antony A (2000) Differential effects of tri-n-butylstannyl benzoates on induction of apoptosis in K562 and MCF-7 cells. IUBMB Life 49(6):519–525

    Google Scholar 

  • Rehman A, Choudhary MI, Thomsen WJ (2001) Bioassay techniques for drug development, vol 16. Harwood Academic Publishers, Amsterdam

    Google Scholar 

  • Rehman Z, Shah A, Muhammad N, Ali S, Qureshi R, Meetsma A, Butler IS (2009) Synthesis, spectroscopic characterization, X-ray structure and evaluation of binding parameters of new triorganotin(IV) dithiocarboxylates with DNA. Eur J Med Chem 44(10):3986–3993

    Google Scholar 

  • Rehman W, Badshah A, Rahim F, Baloch MK, Ullah H, Abid OUR, Nawaz M, Tauseef I (2014) Synthesis, spectral characterization, antibacterial and antitumor studies of some diorganotin(IV) complexes derived from 2-phenylmonomethylglutarate. Inorg Chim Acta 423:177–182

    Google Scholar 

  • Rijt SHV, Sadler PJ (2009) Current applications and future potential for bioinorganic chemistry in the development of anticancer drugs. Drug Discov Today 14:1089–1097

    Google Scholar 

  • Ruiz SG, Ak ZZ, Kaluderovic GN (2014) Structural studies and cytotoxic activity against human cancer cell lines of mono and dinuclear tin(IV) complexes with the α,α′-dimercapto-o-xylene ligand. Inorg Chim Acta 423:117–122

    Google Scholar 

  • Sadiq-ur-Rehman, Shahid K, Ali S, Bhatti MH, Parvez M (2005) Organotin esterification of (E)-3-(3-fluoro-phenyl)-2-(4-chlorophenyl)-2-propenoic acid: synthesis, spectroscopic characterization and in vitro biological activities. Crystal structure of [Ph3Sn(OC(O)C(4-ClC6H4)=CH(3-FC6H4))]. J Organomet Chem 690(5):1396–1408

    Google Scholar 

  • Sakahira H, Enari M, Nagata S (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391:96–99

    Google Scholar 

  • Sarma MS (2015) Cytotoxic activity of organotin(IV) complexes—a short review. Prajnan O Sadhona Sci Annu 2:99–115

    Google Scholar 

  • Saxena AK, Huber F (1989) Organotin compounds and cancer chemotherapy. Coord Chem Rev 95:109–123

    Google Scholar 

  • Seinen W, Willems MI (1976) Toxicity of organotin compounds. I. Atrophy of thymus and thymus-dependent lymphoid tissue in rats fed di-n-octyltindichloride. Toxicol Appl Pharmacol 35(1):63–75

    Google Scholar 

  • Shukla SK, Tiwari VK, Rani S, Tewari IC (2011) Studies on antimicrobial and antitumor efficacy of some new diorganotin (IV) dicarboxylates. Int J Chem Res 3(3):61–65

    Google Scholar 

  • Sijperstein AK, Luijten JGA, Kerk GJMV (1969) Fungicides: an advanced treatise, vol 2. In: Torgeson DC (ed) Academic Press, New York

  • Skilleter DN (1975) The decrease of mitochondrial substrate uptake caused by trialkyltin and trialkyl-lead compounds in chloride media and its relevance to inhibition of oxidative phosphorylation. Biochem J 146(2):465–471

    Google Scholar 

  • Skilleter DN (1976) The influence of adenine nucleotides and oxidizable substrates on triethyltin-mediated chloride uptake by rat liver mitochondria in potassium chloride media. Biochem J 154(2):271–276

    Google Scholar 

  • Sone N, Hagihara B (1964) Inhibitory action of trialkyltin compounds on oxidative phosphorylation in mitochondria. Biochem J 56(2):151–156

    Google Scholar 

  • Tabassum S, Pettinari C (2006a) Chemical and biotechnological developments in organotin cancer chemotherapy. J Organomet Chem 691:1761–1766

    Google Scholar 

  • Tabassum S, Pettinari C (2006b) Chemical and biotechnological developments in organotin cancer chemotherapy. J Organomet Chem 691(8):1761–1766

    Google Scholar 

  • Tabassum S, Yadav S (2014) Investigation of diorganotin(IV) complexes: synthesis, characterization, in vitro DNA binding studies and cytotoxicity assessment of di-n-butyltin(IV) complex. Inorg Chim Acta 423:204–214

    Google Scholar 

  • Tabassum S, Khan RA, Arjmand F, Juvekar AS, Zingde SM (2010) Synthesis of carbohydrate-conjugate heterobimetallic CuII–Sn IV2 and ZnII–Sn IV2 complexes; their interactions with CT DNA and nucleotides; DNA cleavage, in vitro cytotoxicity. Eur J Med Chem 45:4797–4806

    Google Scholar 

  • Tabassum S, Khan RA, Arjmand F, Sen S, Kayal J, Juvekar AS, Zingde SM (2011a) Synthesis and characterization of glycoconjugate tin(IV) complexes: in vitro DNA binding studies, cytotoxicity, and cell death. J Organomet Chem 696:1600–1608

    Google Scholar 

  • Tabassum S, Khan RA, Arjmand F, Aziz M, Juvekar AS, Zingde SM (2011b) Carbohydrate-conjugate heterobimetallic complexes: synthesis, DNA binding studies, artificial nuclease activity and in vitro cytotoxicity. Carbohydr Res 346:2886–2895

    Google Scholar 

  • Tabassum S, Afzal M, Arjmand F (2012) New heterobimetallic CuII–Sn IV2 complex as potential topoisomerase I inhibitor: in vitro DNA binding, cleavage and cytotoxicity against human cancer cell lines. J Photochem Photobiol B 115:63–72

    Google Scholar 

  • Tabassum S, Yadav S, Arjmand F (2013) Synthesis and mechanistic insight of glycosylated CuII/NiII–Sn IV2 heterobimetallic DNA binding agents: validation of a specific CuII–Sn IV2 chemotherapeutic agent for human leukemic cell line K-562. J Organomet Chem 745:226–234

    Google Scholar 

  • Tabassum S, Yadav S, Arjmand F (2014) Exploration of glycosylated-organotin(IV) complexes as anticancer drug candidates. Inorg Chim Acta 423:38–45

    Google Scholar 

  • Tandon S (2009) Organometallic compounds in oncology: implications of novel organotins as antitumor agents. Organometallic compounds in drug research. Basell Polyolefine GmbH, Germany

    Google Scholar 

  • Tariq M, Muhammad N, Sirajuddin M, Ali S, Shah NA, Khalid N, Tahir MN, Khan MR (2013) Synthesis, spectroscopic characterization, X-ray structures, biological screenings, DNA interaction study and catalytic activity of organotin(IV) 3-(4-flourophenyl)-2-methylacrylic acid derivatives. J Organomet Chem 723:79–89

    Google Scholar 

  • Tariq M, Muhammad N, Ali S, Shirazi JH, Tahir MN, Khalid N (2014) Synthesis, spectroscopic, X-ray crystal structure, biological and DNA interaction studies of organotin(IV) complexes of 2-(4-ethoxybenzylidene) butanoic acid. Spectrochim Acta Part A 122:356–364

    Google Scholar 

  • Verginadis II, Karkabounas S, Simos Y, Kontargiris E, Hadjikakou SK, Batistatou A, Evangelou A, Charalabopoulos K (2011) Anticancer and cytotoxic effects of a triorganotin compound with 2-mercapto-nicotinic acid in malignant cell lines and tumor bearing Wistar rats. Eur J Pharm Sci 42:253–261

    Google Scholar 

  • Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 1:1112–1116

    Google Scholar 

  • Viviani B, Rossi AD, Chow SC, Nicotera P (1996) Triethyltin interferes with Ca2+ signaling and potentiates norepinephrine release in PC12 cells. Toxicol Appl Pharmacol 140:289–295

    Google Scholar 

  • White JS, Tobin JM, Cooney JJ (1999) Organotin compounds and their interactions with microorganisms. Can J Microbiol 45:541–554

    Google Scholar 

  • Williams B, Dring LG, Williams RT (1978) The fate of triphenyl lead acetate in the rat. Toxicol Appl Pharmcol 46(3):567–578

    Google Scholar 

  • Xanthopoulou MN, Hadjikakou SK, Hadjiliadis N (2003) Communication: synthesis of a novel triphenyltin(IV) derivative of 2-mercaptonicotinic acid with potent cytotoxicity in vitro. Bioinorg Chem Appl 1(3–4):227–231

    Google Scholar 

  • Yao JK, Leonard S, Reddy R (2006) Altered glutathione redox state in schizophrenia. Dis Markers 22:83–93

    Google Scholar 

  • Yasuda M, Chiba K, Baba A (2000) An ab initio computational study on the reaction of organotin enolates: comparison of highly coordinated tin reagent with non-coordinated reagent. J Am Chem Soc 122:7549–7555

    Google Scholar 

  • Yonemoto J, Shiraishi H, Soma Y (1993) In vitro assessment of teratogenic potential of organotin compounds using rat embryo limb bud cell cultures. Toxicol Lett 66:183–191

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saqib Ali or Saira Shahzadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S., Shahzadi, S. & Imtiaz-ud-Din Anticarcinogenicity and Toxicity of Organotin(IV) Complexes: A Review. Iran J Sci Technol Trans Sci 42, 505–524 (2018). https://doi.org/10.1007/s40995-016-0048-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-016-0048-1

Keywords

Navigation