Skip to main content
Log in

Modular curves \(X_0(N)\) with infinitely many quartic points

  • Research
  • Published:
Research in Number Theory Aims and scope Submit manuscript

Abstract

We determine all modular curves \(X_0(N)\) with infinitely many quartic points. To do this, we define a pairing that induces a quadratic form representing all possible degrees of a rational morphism from \(X_0(N)\) to a positive rank elliptic curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The Sage codes used in the proofs can be found on: https://github.com/koffie/mdsage/tree/main/articles/derickx_orlic-quartic_X0.

References

  1. Abramovich, D.: A linear lower bound on the gonality of modular curves. Int. Math. Res. Notices 124, 1005–1011 (1996)

    Article  MathSciNet  Google Scholar 

  2. Abramovich, D., Harris, J.: Abelian varieties and curves in \(W_ d (C)\). Compos. Math. 78, 227–238 (1991)

    Google Scholar 

  3. Bars, F.: Bielliptic modular curves. J. Number Theory 76, 154–165 (1999)

    Article  MathSciNet  Google Scholar 

  4. Bars, F., Kamel, M., Schweizer, A.: Bielliptic quotient modular curves of \(X_0(N)\). Math. Comp. 92, 895–929 (2022)

    Article  Google Scholar 

  5. Birkenhake, C., Lange, H.: Complex Abelian Varieties. Springer, Berlin (2004)

    Book  Google Scholar 

  6. Bourdon, A., Ejder, O., Liu, Y., Odumodu, F., Viray, B.: On the level of modular curves that give rise to isolated \(j\)-invariants. Adv. Math. 357, 106824 (2019)

    Article  MathSciNet  Google Scholar 

  7. Cremona, J.: Elliptic curve data. http://homepages.warwick.ac.uk/staff/J.E.Cremona/ftp/data/INDEX.html (2014)

  8. Debarre, O., Fahlaoui, R.: Abelian varieties in \(W^r_d(C)\) and points of bounded degree on algebraic curves. Compos. Math. 88, 235–249 (1993)

    Google Scholar 

  9. Derickx, M., Sutherland, A.V.: Torsion subgroups of elliptic curves over quintic and sextic number fields. Proc. Am. Math. Soc. 145, 4233–4245 (2017)

    Article  MathSciNet  Google Scholar 

  10. Derickx, M., van Hoeij, M.: Gonality of the modular curve \(X_1(N)\). J. Algebra 417, 52–71 (2014)

    Article  MathSciNet  Google Scholar 

  11. Diamond, F., Im, J.: Modular Forms and Modular Curves. American Mathematical Society, Providence, RI (1995)

    Google Scholar 

  12. Fincke, U., Pohst, M.: Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math. Comput. 44, 463–471 (1985)

    Article  MathSciNet  Google Scholar 

  13. Frey, G.: Curves with infinitely many points of fixed degree. Israel J. Math. 85, 79–83 (1994)

    Article  MathSciNet  Google Scholar 

  14. Harris, J., Silverman, J.H.: Bielliptic curves and symmetric products. Proc. Am. Math. Soc. 112, 347–356 (1991)

    Article  MathSciNet  Google Scholar 

  15. Hasegawa, Y., Shimura, M.: Trigonal modular curves. Acta Arith. 88, 129–140 (1999)

    Article  MathSciNet  Google Scholar 

  16. Hwang, W., Jeon, D.: Modular curves with infinitely many quartic points. Math. Comput. 93, 383–395 (2023)

    Article  MathSciNet  Google Scholar 

  17. Jeon, D.: Bielliptic modular curves \(X_0^+(N)\). J. Number Theory 185, 319–338 (2018)

    Article  MathSciNet  Google Scholar 

  18. Jeon, D.: Modular curves with infinitely many cubic points. J. Number Theory 219, 344–355 (2021)

    Article  MathSciNet  Google Scholar 

  19. Jeon, D.: Trielliptic modular curves \(X_1(N)\). Acta Arith. 206, 171–188 (2022)

    Article  MathSciNet  Google Scholar 

  20. Jeon, D.: Tetraelliptic modular curves \(X_1(N)\). arXiv:2305.05851 (2023)

  21. Jeon, D., Kim, C.H., Park, E.: On the torsion of elliptic curves over quartic number fields. J. Lond. Math. Soc. (2) 74, 1–12 (2006)

    Article  MathSciNet  Google Scholar 

  22. Jeon, D., Kim, C.H., Schweizer, A.: On the torsion of elliptic curves over cubic number fields. Acta Arith. 113, 291–301 (2004)

    Article  MathSciNet  Google Scholar 

  23. Kadets, B., Vogt, I.: Subspace configurations and low degree points on curves. arXiv:2208.01067 (2022)

  24. Kamienny, S.: Torsion points on elliptic curves and \(q\)-coefficients of modular forms. Invent. Math. 109, 221–229 (1992)

    Article  MathSciNet  Google Scholar 

  25. Kenku, M.A.: The modular curve \(X_0(39)\) and rational isogeny. Math. Proc. Camb. Philos. Soc. 85, 21–23 (1979)

    Article  MathSciNet  Google Scholar 

  26. Kenku, M.A.: The modular curve \(X_0(169)\) and rational isogeny. J. Lond. Math. Soc. s2–22, 239–244 (1980)

    Article  MathSciNet  Google Scholar 

  27. Kenku, M.A.: The modular curves \(X_0(65)\) and \(X_0(91)\) and rational isogeny. Math. Proc. Camb. Philos. Soc. 87, 15–20 (1980)

    Article  MathSciNet  Google Scholar 

  28. Kenku, M.A.: On the modular curves \(X_0(125)\), \(X_1(25)\) and \(X_1(49)\). J. Lond. Math. Soc. II. Ser. 23, 415–427 (1981)

    Article  MathSciNet  Google Scholar 

  29. Kenku, M.A., Momose, F.: Torsion points on elliptic curves defined over quadratic fields. Nagoya Math. J. 109, 125–149 (1988)

    Article  MathSciNet  Google Scholar 

  30. Ling, S.: Shimura subgroups and degeneracy maps. J. Number Theory 54, 39–59 (1995)

    Article  MathSciNet  Google Scholar 

  31. LMFDB Collaboration.: The L-functions and modular forms database. http://www.lmfdb.org (2022). Accessed 21 Mar 2023

  32. Mazur, B.: Modular curves and the Eisenstein ideal. Inst. Hautes Études Sci. Publ. Math. 1977, 33–186 (1978)

    MathSciNet  Google Scholar 

  33. Mazur, B.: Rational isogenies of prime degree (with an appendix by D. Goldfeld). Invent. Math. 44, 129–162 (1978)

    Article  MathSciNet  Google Scholar 

  34. Milne, J.S.: Abelian Varieties, 2nd edn., pp. 103–150. Springer, New York (1986)

    Google Scholar 

  35. Milne, J.S.: Jacobian Varieties, pp. 167–212. Springer, New York (1986)

    Google Scholar 

  36. Najman, F., Orlić, P.: Gonality of the modular curve \(X_0(N)\). Math. Comput. 93, 863–886 (2023)

    Article  Google Scholar 

  37. Ogg, A.P.: Hyperelliptic modular curves. Bull. Soc. Math. France 102, 449–462 (1974)

    Article  MathSciNet  Google Scholar 

  38. Silverman, J.H.: The Arithmetic of Elliptic Curves. Volume 106 of Graduate Texts in Mathematics, 2nd edn. Springer, Dordrecht (2009)

    Book  Google Scholar 

  39. Stein, W.A.: Modular Forms, a Computational Approach, vol. 79. American Mathematical Society, Providence, RI (2007)

    Google Scholar 

Download references

Acknowledgements

We are grateful to Filip Najman for his helpful comments and Kenneth A. Ribet for providing some very useful references to the literature. We also thank the referees for their comments that have greatly improved the paper.

Funding

The second author was supported by the QuantiXLie Centre of Excellence, a project co-financed by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (Grant KK.01.1.1.01.0004) and by the Croatian Science Foundation under the project no. IP-2022-10-5008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petar Orlić.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derickx, M., Orlić, P. Modular curves \(X_0(N)\) with infinitely many quartic points. Res. number theory 10, 42 (2024). https://doi.org/10.1007/s40993-024-00525-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40993-024-00525-6

Keywords

Mathematics Subject Classification

Navigation