Skip to main content
Log in

Distribution of toric periods of modular forms on definite quaternion algebras

  • Research
  • Published:
Research in Number Theory Aims and scope Submit manuscript

Abstract

Let D be a definite quaternion algebra over \(\mathbb {Q}\) and \(\mathcal {O}\) an Eichler order in D of square-free level. We study distribution of the toric periods of algebraic modular forms of level \(\mathcal {O}\). We focus on two problems: non-vanishing and sign changes. Firstly, under certain conditions on \(\mathcal {O}\), we prove the non-vanishing of the toric periods for positive proportion of imaginary quadratic fields. This improves the known lower bounds toward Goldfeld’s conjecture in some cases and provides evidence for similar non-vanishing conjectures for central values of twisted automorphic L-functions. Secondly, we show that the sequence of toric periods has infinitely many sign changes. This proves the sign changes of the Fourier coefficients \(\{a(n)\}_n\) of weight \(\frac{3}{2}\) modular forms, where n ranges over fundamental discriminants. In the final section, we present numerical experiments in some cases and formulate several conjectures based on them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in http://wakatsuki.w3.kanazawa-u.ac.jp/Figures.html.

Notes

  1. Another way to define \(\coprod _{[I]\in {{\,\mathrm{Cl}\,}}(\mathcal {O})}{{\,\mathrm{Emb}\,}}(\mathfrak {o}, \mathcal {O}(I))_{/\sim }\) is to consider the \(D^\times \)-conjugate action on the set \(\coprod _I {{\,\mathrm{Emb}\,}}(\mathfrak {o}, \mathcal {O}(I))_{/\sim }\), where I runs over all right fractional \(\mathcal {O}\)-ideals.

References

  1. Blomer, V., Harcos, G.: Hybrid bounds for twisted \(L\)-functions. J. Reine Angew. Math. 621, 53–79 (2008). https://doi.org/10.1515/CRELLE.2008.058

    Article  MathSciNet  MATH  Google Scholar 

  2. Böcherer, S., Schulze-Pillot, R.: On a theorem of Waldspurger and on Eisenstein series of Klingen type. Math. Ann. 288(3), 361–383 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997). https://doi.org/10.1006/jsco.1996.0125

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruinier, J.H., Kohnen, W.: Sign Changes of Coefficients of Half Integral Weight Modular Forms, Modular Forms on Schiermonnikoog, pp. 57–65. Cambridge University Press, Cambridge (2008). https://doi.org/10.1017/CBO9780511543371.005

    Book  MATH  Google Scholar 

  5. Conrey, J.B., Keating, J.P., Rubinstein, M.O., Snaith, N.C.: Random matrix theory and the Fourier coefficients of half-integral-weight forms. Exp. Math. 15(1), 67–82 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Duke, W.: Hyperbolic distribution problems and half-integral weight Maass forms. Invent. Math. 92(1), 73–90 (1988). https://doi.org/10.1007/BF01393993

    Article  MathSciNet  MATH  Google Scholar 

  7. Goldfeld, D.: Conjectures on elliptic curves over quadratic fields, Number theory, Carbondale,: (Proc. Southern Illinois Conf., Southern Illinois Univ., Carbondale, 1979), Lecture Notes in Mathematics, vol. 751. Springer, Berlin 1979, 108–118 (1979)

  8. Gross, B.H.: Heights and the special values of \(L\)-series, Number theory (Montreal, Que.,: CMS Conf. Proc., vol. 7, American Mathematical Society, Providence, 1987, 115–187 (1985)

  9. Hamieh, A.: Ternary quadratic forms and half-integral weight modular forms. LMS J. Comput. Math. 15, 418–435 (2012). https://doi.org/10.1112/S1461157012001155

    Article  MathSciNet  MATH  Google Scholar 

  10. Hartung, P.: Proof of the existence of infinitely many imaginary quadratic fields whose class number is not divisible by 3. J. Number Theory 6, 276–278 (1974). https://doi.org/10.1016/0022-314X(74)90022-5

    Article  MathSciNet  MATH  Google Scholar 

  11. He, Z., Kane, B.: Sign changes of Fourier coefficients of cusp forms of half-integral weight over split and inert primes in quadratic number fields. Res. Number Theory 7(1), 17 (2021). https://doi.org/10.1007/s40993-020-00235-9

    Article  MathSciNet  MATH  Google Scholar 

  12. Hulse, T.A., Kiral, E.M., Kuan, C.I., Lim, L.-M.: The sign of Fourier coefficients of half-integral weight cusp forms. Int. J. Number Theory 8, 749–762 (2012). https://doi.org/10.1142/S179304211250042X

    Article  MathSciNet  MATH  Google Scholar 

  13. Inam, I., Wiese, G.: Equidistribution of signs for modular eigenforms of half integral weight. Arch. Math. 101, 331–339 (2013). https://doi.org/10.1007/s00013-013-0566-4

    Article  MathSciNet  MATH  Google Scholar 

  14. Keaton, R., Pitale, A.: Restrictions of Eisenstein series and Rankin–Selberg convolution. Doc. Math. 24, 1–45 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Kirschmer: Quaternion orders with type number one. http://www.math.rwth-aachen.de/~Markus.Kirschmer/orders/

  16. Kohnen, W.: Newforms of half-integral weight. J. Reine Angew. Math. 333, 32–72 (1982)

    MathSciNet  MATH  Google Scholar 

  17. Kohnen, W., Lau, Y.-K., Wu, J.: Fourier coefficients of cusp forms of half integral weight. Math. Z. 273, 29–41 (2013). https://doi.org/10.1007/s00209-012-0994-z

    Article  MathSciNet  MATH  Google Scholar 

  18. Kriz, D., Li, C.: Goldfeld’s conjecture and congruences between Heegner points. Forum Math. Sigma 7, 80 (2019). https://doi.org/10.1017/fms.2019.9

    Article  MathSciNet  MATH  Google Scholar 

  19. Lau, Y.-Y., Royer, E., Wu, J.: Sign of Fourier coefficients of modular forms of half-integral weight. Mathematika 62(3), 866–883 (2016). https://doi.org/10.1112/S0025579316000103

    Article  MathSciNet  MATH  Google Scholar 

  20. Lester, S., Radziwill, M.: Signs of Fourier coefficients of half-integral weight modular forms. Math. Ann. 379(3–4), 1553–1604 (2021). https://doi.org/10.1007/s00208-020-02123-0

    Article  MathSciNet  MATH  Google Scholar 

  21. Martin, K.: The Jacquet–Langlands correspondence, Eisenstein congruences, and integral \(L\)-values in weight 2. Math. Res. Lett. 24(6), 1775–1795 (2017). https://doi.org/10.4310/MRL.2017.v24.n6.a11

    Article  MathSciNet  MATH  Google Scholar 

  22. Martin, K.: An on-average Maeda-type conjecture in the level aspect. Proc. Am. Math. Soc. 149(4), 1373–1386 (2021). https://doi.org/10.1090/proc/15328

    Article  MathSciNet  MATH  Google Scholar 

  23. Martin, K., Wakatsuki, S.: Mass formulas and Eisenstein congruences in higher rank (2019). arXiv:1907.03417

  24. Mezroui, S.: The equidistribution of Fourier coefficients of half integral weight modular forms on the plane. Czechoslovak Math. J. 70(145), 235–249 (2020). https://doi.org/10.21136/CMJ.2019.0223-18

    Article  MathSciNet  MATH  Google Scholar 

  25. Michel, P.: The subconvexity problem for Rankin–Selberg \(L\)-functions and equidistribution of Heegner points. Ann. Math. (2) 160(1), 185–236 (2004). https://doi.org/10.4007/annals.2004.160.185

    Article  MathSciNet  MATH  Google Scholar 

  26. Miyake, T.: Modular forms, Reprint of the first 1989 English edition, Springer Monographs in Mathematics, Springer, Berlin (2006). Translated from the 1976 Japanese original by Yoshitaka Maeda

  27. Schmidt, R.: Some remarks on local newforms for \(\rm GL (2)\). J. Ramanujan Math. Soc. 17(2), 115–147 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Schulze-Pillot, R.: Averages of Fourier coefficients of Siegel modular forms and representation of binary quadratic forms by quadratic forms in four variables. Math. Ann. 368(3–4), 923–943 (2017). https://doi.org/10.1007/s00208-016-1448-4

    Article  MathSciNet  MATH  Google Scholar 

  29. Shimura, G.: On modular forms of half integral weight. Ann. Math. 97, 440–481 (1973). https://doi.org/10.2307/1970831

    Article  MathSciNet  MATH  Google Scholar 

  30. Suzuki, M., Wakatsuki, S.: Zeta functions and nonvanishing theorems for toric periods on \({\rm GL}_2\) (2020). arXiv:2005.02017

  31. Suzuki, M., Wakatsuki, S.: Explicit mean value theorems for toric periods and automorphic \( L \)-functions; with an appendix by authors and S. Yokoyama (2021). arXiv:2103.04589

  32. Suzuki, M., Wakatsuki, S., Yokoyama, S.: Figures. http://wakatsuki.w3.kanazawa-u.ac.jp/Figures.html

  33. Taya, H.: Iwasawa invariants and class numbers of quadratic fields for the prime \(3\). Proc. Am. Math. Soc. 128(5), 1285–1292 (2000). https://doi.org/10.1090/S0002-9939-99-05177-1

    Article  MathSciNet  MATH  Google Scholar 

  34. Voight, J.: Quaternion Algebras. Springer, Cham (2021)

    Book  MATH  Google Scholar 

  35. Waldspurger, J.-L.: Sur les coefficients de Fourier des formes modulaires de poids demi-entier. J. Math. pures et appl. 60(4), 375–484 (1981)

    MathSciNet  MATH  Google Scholar 

  36. Waldspurger, J.-L.: Sur les valeurs de certaines fonctions \(L\) automorphes en leur centre de symétrie. Compositio Math. 54(2), 173–242 (1985)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Tamotsu Ikeda, Toshiki Matsusaka, Masataka Chida and Kimball Martin for helpful discussions and valuable comments. The authors also thank Siegfried Böcherer, Rainer Schulze-Pillot and Winfried Kohnen for answering many questions. M.S. was partially supported by Grant-in-Aid for JSPS Fellows No.20J00434. S.W. was partially supported by JSPS Grant-in-Aid for Scientific Research (C) No.18K03235 and (B) No.21H00972. S.Y. was partially supported by JSPS Grant-in-Aid for Scientific Research (C) No.20K03537.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miyu Suzuki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suzuki, M., Wakatsuki, S. & Yokoyama, S. Distribution of toric periods of modular forms on definite quaternion algebras. Res. number theory 8, 90 (2022). https://doi.org/10.1007/s40993-022-00389-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40993-022-00389-8

Navigation