Skip to main content
Log in

An analogue of Weil’s converse theorem for harmonic Maass forms of polynomial growth

  • Research
  • Published:
Research in Number Theory Aims and scope Submit manuscript

Abstract

We construct a family of harmonic Maass forms of polynomial growth of any level corresponding to any cusp whose shadows are Eisenstein series of integral weight. We further consider Dirichlet series attached to a harmonic Maass form of polynomial growth, study its analytic properties, and prove an analogue of Weil’s converse theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Arfken, G.B., Weber, H.: Mathematical Methods for Physicists (English Summary), 5th edn. Harcourt/Academic Press, Burlington, MA (2001)

    MATH  Google Scholar 

  2. Bringmann, K., Ono, K.: Coefficients of harmonic Maass forms, partitions, \(q\)-series, and modular forms. Dev. Math. 23, 23–38 (2012)

    MATH  Google Scholar 

  3. Bringmann, K., Folsom, A., Ono, K., Rolen, L.: Harmonic Maass forms and mock modular forms: theory and applications. American Mathematical Society, Providence (2017)

    Book  Google Scholar 

  4. Bruinier, J.H., Funke, J.: On two geometric theta lifts. Duke Math. J. 125, 45–90 (2004)

    Article  MathSciNet  Google Scholar 

  5. Cogdell, J., Piatetski-Shapiro, I.: Converse theorems for \(GL_n\). Inst. Hautes Études Sci. Publ. Math. 79, 157–214 (1994)

    Article  Google Scholar 

  6. Cohen, H., Strömberg, F.: Modular Forms: A Classical Approach. American Mathematical Society, Providence (2017)

    Book  Google Scholar 

  7. Goldfeld, D., Hundley, J.: Automorphic Representations and \(L\)-Functions for the General Linear Group. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  8. John, F.: Plane Waves and Spherical Means. Springer, Berlin (1955)

    MATH  Google Scholar 

  9. Hecke, E.: Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung. Math. Ann. 112, 664–699 (1936)

    Article  MathSciNet  Google Scholar 

  10. Herrero, S.: A converse theorem for Jacobi-Maass forms and applications. J. Number Theory 169, 41–61 (2016)

    Article  MathSciNet  Google Scholar 

  11. Herrero, S., Pippich, A.V.: Mock modular forms whose shadows are Eisenstein series of integral weight. Math. Res. Lett. 27, 435–463 (2020)

    Article  MathSciNet  Google Scholar 

  12. Jacquet, H., Langlands, R.: Automorphic Forms on \(GL(2)\). Lecture Notes in Mathematics, vol. 114. Springer, Berlin (1970)

  13. Jacquet, H., Piatetski-Shapiro, I., Shalika, J.: Automorphic forms on \(GL(3)\) I. Ann. Math. 109, 169–212 (1979)

    Article  MathSciNet  Google Scholar 

  14. Kohnen, W., Martin, Y., Shankhadhar, K.D.: A converse theorem for Jacobi cusp forms of degree two. Acta Arith. 189, 223–262 (2019)

    Article  MathSciNet  Google Scholar 

  15. Maass, H.: Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen. Math. Ann. 121, 141–183 (1949)

    Article  MathSciNet  Google Scholar 

  16. Martin, Y.: A converse theorem for Jacobi forms. J. Number Theory 61, 181–193 (1996)

    Article  MathSciNet  Google Scholar 

  17. Martin, Y., Osses, D.: On the analogue of Weil’s converse theorem for Jacobi forms and their lift to half-integral weight modular forms. Ramanujan J. 26, 155–183 (2011)

    Article  MathSciNet  Google Scholar 

  18. Miyake, T.: Modular Forms. Springer Monographs in Mathematics (1976)

  19. Murty, M.R., Dewar, M., Graves, H.: Problems in the Theory of Modular Forms, Institute of Mathematical Sciences Lecture Notes, vol. 1. Hindustan Book Agency, New Delhi (2015)

    MATH  Google Scholar 

  20. Neururer, M., Oliver, T.: Weil’s converse theorem for Maass forms and cancellation of zeros. Acta Arith. 196, 387–422 (2020)

    Article  MathSciNet  Google Scholar 

  21. Rankin, R.: Modular Forms and Functions. Cambridge University Press, Cambridge (1977)

    Book  Google Scholar 

  22. Singh, R.K.: Applications of Number Theory in String Theory, MS Thesis (2020) (https://ranveer14.github.io/MS_Thesis.pdf), IISER Bhopal (India)

  23. Weil, A.: Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung. Math. Ann. 168, 149–156 (1967)

    Article  MathSciNet  Google Scholar 

  24. Zwegers, S.: Mock theta functions, Ph. D. thesis (2002), Universiteit Utrecht

Download references

Acknowledgements

We would like to thank the anonymous referees for detailed comments and suggestions which led to some mathematical corrections and an improvement of the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karam Deo Shankhadhar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shankhadhar, K.D., Singh, R.K. An analogue of Weil’s converse theorem for harmonic Maass forms of polynomial growth. Res. number theory 8, 36 (2022). https://doi.org/10.1007/s40993-022-00334-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40993-022-00334-9

Keywords

Mathematics Subject Classification

Navigation