Proof of a supercongruence conjecture of He


We here establish some supercongruence results concerning certain truncated hypergeometric series. As a consequence, we confirm a recent conjectural supercongruence [6, Conjecture1.3] of Bing He.

This is a preview of subscription content, access via your institution.


  1. 1.

    Andrews, G., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  2. 2.

    Bailey, W.: Generalized Hypergeometric Series. Cambridge University Press, Cambridge (1935)

    MATH  Google Scholar 

  3. 3.

    Barman, R., Saikia, N.: Supercongruences for truncated hypergeometric series and \(p\)-adic gamma function. Math. Proc. Camb. Philos. Soc. 168(1), 171–195 (2020)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Chetry, A.S., Kalita, G.: On a general Van Hamme-type supercongruence. J. Ramanujan Math. Soc., to appear

  5. 5.

    He, B.: Some congruences on conjectures of van Hamme. J. Number Theory 166, 406–414 (2016)

    MathSciNet  Article  Google Scholar 

  6. 6.

    He, B.: On some conjectures of Swisher. Results Math. 71, 1223–1234 (2017)

    MathSciNet  Article  Google Scholar 

  7. 7.

    He, B.: Supercongruences on truncated hypergeometric series. Results Math. 72, 303–317 (2017)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Jana, A., Kalita, G.: Supercongruences for sums involving \(\big (\frac{1}{\ell }\big )_k^3\). Integral Transform Spec. Funct. 30, 683–692 (2019)

    Article  Google Scholar 

  9. 9.

    Jana, A., Kalita, G.: Proof of some conjectural supercongruences of Guo and Schlosser. Ramanujan J. (2020).

    Article  Google Scholar 

  10. 10.

    Jana, A., Kalita, G.: Supercongruences for sums involving fourth power of some rising factorials. Proc. Indian Acad. Sci. Math. Sci. 130(1), 13 (2020)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Kalita, G., Chetry, A.S.: On somecongruences concerning truncated hypergeometric series. Proc. Am. Math. Soc. 147, 533–546 (2019)

    Article  Google Scholar 

  12. 12.

    Kalita, G., Jana, A.: On some supercongruence conjectures for truncated hypergeometric series, Indian J. Pure Appl. Math., to appear

  13. 13.

    Koblitz, N.: \(p\)-Adic Analysis: A Short Course on Recent Work. Cambridge Univ Press, Cambridge (1980)

    Book  Google Scholar 

  14. 14.

    Liu, J.-C.: A \(p\)-adic supercongruence for truncated hypergeometric series \(_7F_6\). Results Math. 73(4), 2057–2066 (2017)

    Article  Google Scholar 

  15. 15.

    Long, L.: Hypergeometric evaluation identities and supercongruences. Pac. J. Math. 249(2), 405–418 (2017)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Long, L., Ramakrishna, R.: Some supercongruences occuring in truncated hypergeometric series. Adv. Math. 290, 773–808 (2016)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Ramanujan, S.: Modular equations and approximations to \(\pi \), Quart. J. Math. 45 (1914), 350–372. In Collected papers of Srinivasa Ramanujan, pp. 23–39. AMS Chelsea Publ., Providence, RI, (2000)

  18. 18.

    Swisher, H.: On the supercongruence conjectures of Van Hamme. Res. Math. Sci. 2(2), 18 (2015)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Van Hamme, L.: Some conjectures concerning partial sums of generalized hypergeometric series, \(p\)-adic functional analysis (Nijmegen, 1996). Lecture Notes Pure Appl. Math. 192, 223–236 (1997)

    MATH  Google Scholar 

Download references


Arijit Jana acknowledges the support received from Department of Science and Technology, Goverment of India, through an INSPIRE Fellowship (Award no. DST/INSPIRE Fellowship/2017/IF170327). Gautam Kalita is partially supported by a project (Grant Number: EMR/ 2016/005010) of SERB, Department of Science and Technology, Goverment of India, under Extra Mural Research Funding (Individual Centric).

Author information



Corresponding author

Correspondence to Gautam Kalita.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chetry, A.S., Jana, A. & Kalita, G. Proof of a supercongruence conjecture of He. Res. number theory 7, 21 (2021).

Download citation


  • Hypergeometric series
  • Supercongruences
  • Gamma function

Mathematics Subject Classification

  • 11A07
  • 11D88
  • 33B15
  • 33C20