Non-vanishing of derivatives of L-functions of Hilbert modular forms in the critical strip


In this paper, we show that, on average, the derivatives of L-functions of cuspidal Hilbert modular forms with sufficiently large parallel weight k do not vanish on the line segments \(\mathfrak {I}(s)=t_{0}\), \(\mathfrak {R}(s)\in (\frac{k-1}{2},\frac{k}{2}-\epsilon )\cup (\frac{k}{2}+\epsilon ,\frac{k+1}{2})\). This is analogous to the case of classical modular forms.

This is a preview of subscription content, access via your institution.


  1. 1.

    Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dover Publications Inc, New York (1964)

    MATH  Google Scholar 

  2. 2.

    Hamieh, A., Raji, W.: Non-vanishing of L-functions of Hilbert modular forms inside the critical strip. Acta Arith. 185, 333–346 (2018)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Kohnen, W.: Nonvanishing of Hecke \(L\)-functions associated to cusp forms inside the critical strip. J. Number Theory 67, 182–189 (1997)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Kohnen, W., Sengupta, J., Weigel, M.: Nonvanishing of derivatives of Hecke L-functions associated to cusp forms inside the critical strip. Ramanujan J. 51, 319–327 (2020)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Luo, W.: Poincaré series and Hilbert modular forms. Ramanujan J. 7, 129–140 (2003). Rankin memorial issues

    MathSciNet  Article  Google Scholar 

  6. 6.

    Shimura, G.: The special values of the zeta functions associated with Hilbert modular forms. Duke Math. J. 45, 637–679 (1978)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Trotabas, D.: Non annulation des fonctions \(L\) des formes modulaires de Hilbert au point central. Ann. Inst. Fourier (Grenoble) 61, 187–259 (2011)

    MathSciNet  Article  Google Scholar 

Download references

Author information




The authors are grateful to the referee for a number of suggestions that improved the exposition of this manuscript.

Corresponding author

Correspondence to Wissam Raji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research of the first author is partially supported by an NSERC Discovery Grant.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hamieh, A., Raji, W. Non-vanishing of derivatives of L-functions of Hilbert modular forms in the critical strip. Res. number theory 7, 20 (2021).

Download citation


  • Hilbert modular forms
  • Derivatives of L-functions
  • Non-vanishing of L-functions

Mathematics Subject Classification

  • Primary 11F41
  • 11F67
  • Secondary 11F30
  • 11F11
  • 11F12
  • 11N75