Skip to main content
Log in

Modular Dedekind symbols associated to Fuchsian groups and higher-order Eisenstein series

  • Research
  • Published:
Research in Number Theory Aims and scope Submit manuscript

Abstract

Let E(zs) be the non-holomorphic Eisenstein series for the modular group \({\mathrm{SL}}(2,{{\mathbb {Z}}})\). The classical Kronecker limit formula shows that the second term in the Laurent expansion at \(s=1\) of E(zs) is essentially the logarithm of the Dedekind eta function. This eta function is a weight 1/2 modular form and Dedekind expressed its multiplier system in terms of Dedekind sums. Building on work of Goldstein, we extend these results from the modular group to more general Fuchsian groups \({\Gamma }\). The analogue of the eta function has a multiplier system that may be expressed in terms of a map \(S:{\Gamma }\rightarrow {{\mathbb {R}}}\) which we call a modular Dedekind symbol. We obtain detailed properties of these symbols by means of the limit formula. Twisting the usual Eisenstein series with powers of additive homomorphisms from \({\Gamma }\) to \({{\mathbb {C}}}\) produces higher-order Eisenstein series. These series share many of the properties of E(zs) though they have a more complicated automorphy condition. They satisfy a Kronecker limit formula and produce higher-order Dedekind symbols \(S^*:{\Gamma }\rightarrow {{\mathbb {R}}}\). As an application of our general results, we prove that higher-order Dedekind symbols associated to genus one congruence groups \({\Gamma }_0(N)\) are rational.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. It should have been stated in this theorem that \(\xi _S^{m,m}(s) \not \equiv 0\) which is clear from its construction.

References

  1. Apostol, T.M.: Modular Functions and Dirichlet Series in Number Theory. Graduate Texts in Mathematics, 41. Springer, New York (1990)

    Book  Google Scholar 

  2. Asai, T.: The reciprocity of Dedekind sums and the factor set for the universal covering group of \({{{\rm SL}}(2, {{\mathbb{R}}})}\). Nagoya Math. J. 37, 67–80 (1970)

    Article  MathSciNet  Google Scholar 

  3. Atiyah, M.: The logarithm of the Dedekind \(\eta \)-function. Math. Ann. 278, 335–380 (1987)

    Article  MathSciNet  Google Scholar 

  4. Atkin, A.O.L., Lehner, J.: Hecke operators on \(\Gamma _0(m)\). Math. Ann. 185, 134–160 (1970)

    Article  MathSciNet  Google Scholar 

  5. Bump, D.: Automorphic Forms and Representations. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  6. Cox, D., McKay, J., Stevenhagen, P.: Principal moduli and class fields. Bull. Lond. Math. Soc. 36(1), 3–12 (2004)

    Article  MathSciNet  Google Scholar 

  7. Cummins, C.J.: Fundamental domains for genus-zero and genus-one congruence subgroups. LMS J. Comput. Math. 13, 222–245 (2010)

    Article  MathSciNet  Google Scholar 

  8. Cummins, C.J., Pauli, S.: Congruence subgroups of \({{\rm PSL}}(2,{{{\mathbb{Z}}}})\) of genus less than or equal to 24. Exp. Math. 12, 243–255 (2003)

    Article  MathSciNet  Google Scholar 

  9. Goldfeld, D.: Modular elliptic curves and Diophantine problems. In: Number Theory (Banff, AB, 1988), pp. , 157–175. de Gruyter, Berlin (1990)

  10. Goldfeld, D.: Zeta functions formed with modular symbols. In: Automorphic Forms, Automorphic Representations, and Arithmetic (Fort Worth, TX, 1996), Proceedings of Symposia in Pure Mathematics 66, pp. 111–121. American Mathematical Society, Providence (1999)

  11. Goldfeld, D.: The distribution of modular symbols. In: Number Theory in Progress (Zakopane-Kościelisko, 1997), vol. 2, pp. 849–865. de Gruyter, Berlin (1999)

  12. Goldstein, L.: Dedekind sums for a Fuchsian group. I. Nagoya Math. J. 50, 21–47 (1973)

    Article  MathSciNet  Google Scholar 

  13. Goldstein, L.: Errata for “Dedekind sums for a Fuchsian group. I” (Nagoya Math. J. 50 (1973), 21–47). Nagoya Math. J. 53 (1974), 235–237

  14. Ghys, É.: Knots and Dynamics. International Congress of Mathematicians, vol. 1, pp. 247–277. European Mathematical Society, Zürich (2007)

    MATH  Google Scholar 

  15. Hirzebruch, F.: Hilbert modular surfaces. Enseignement Math. 19, 183–281 (1973)

    MathSciNet  MATH  Google Scholar 

  16. Imamoglu, Ö., O’Sullivan, C.: Parabolic, hyperbolic and elliptic Poincaré series. Acta Arith. 139(3), 199–228 (2009)

    Article  MathSciNet  Google Scholar 

  17. Iwaniec, H.: Topics in Classical Automorphic Forms. Graduate Studies in Mathematics 17. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  18. Iwaniec, H.: Spectral Methods of Automorphic Forms. Graduate Studies in Mathematics 53. AMS, Providence (2002)

    Google Scholar 

  19. Jorgenson, J., O’Sullivan, C.: Convolution Dirichlet series and a Kronecker’s limit formula for second-order Eisenstein series. Nagoya Math. J. 179, 47–102 (2005)

    Article  MathSciNet  Google Scholar 

  20. Jorgenson, J., O’Sullivan, C.: Unipotent vector bundles and higher-order non-holomorphic Eisenstein series. J. Théor. Nombres Bordx. 20(1), 131–163 (2008)

    Article  MathSciNet  Google Scholar 

  21. Jorgenson, J., Smajlović, L., Then, H.: Kronecker’s limit formula, holomorphic modular functions and \(q\)-expansions on certain arithmetic groups. Exp. Math. 25, 295–320 (2016)

    Article  MathSciNet  Google Scholar 

  22. Jorgenson, J., Smajlović, L., Then, H.: Certain aspects of holomorphic function theory on some genus-zero arithmetic groups. LMS J. Comput. Math. 19(2), 360–381 (2016)

    Article  MathSciNet  Google Scholar 

  23. Knuth, D.: Notes on generalized Dedekind sums. Acta Arith. 33, 297–325 (1977)

    Article  MathSciNet  Google Scholar 

  24. Lang, S.: Introduction to Modular Forms. Grundlehren der Mathematischen Wissenschaften, vol. 222. Springer, Berlin (1995)

    Google Scholar 

  25. Manin, Y.: Periods of parabolic forms and \(p\)-adic Hecke series. Math. Sbornik 134, 378–401 (1973) (English translation Math. USSR-Sb. 21 (1973), 371–393)

  26. O’Sullivan, C.: Properties of Eisenstein series formed with modular symbols. J. Reine Angew. Math. 518, 163–186 (2000)

    MathSciNet  MATH  Google Scholar 

  27. Petersson, H.: Zur analytischen Theorie der Grenzkreisgruppen I. Math. Ann. 115, 23–67 (1938)

    Article  MathSciNet  Google Scholar 

  28. Petridis, Y.N.: Spectral deformations and Eisenstein series associated with modular symbols. Int. Math. Res. Not. 19, 991–1006 (2002)

    Article  MathSciNet  Google Scholar 

  29. Petridis, Y., Risager, M.: Modular symbols have a normal distribution. Geom. Funct. Anal. 14, 1013–1043 (2004)

    Article  MathSciNet  Google Scholar 

  30. Rademacher, H., Grosswald, E.: Dedekind Sums. The Carus Mathematical Monographs 16. The Mathematical Association of America, Washington, DC (1972)

    MATH  Google Scholar 

  31. Risager, M.: Automorphic forms and modular symbols. PhD thesis, University of Aarhus (2003)

  32. Selberg, A.: On the estimation of Fourier coefficients of modular forms. In: Theory of Numbers (Cal. Tech. Pasadena, CA 1963), Proceedings of Symposia in Pure Mathematics, vol. 8, pp. 1–15. American Mathematical Society, Providence (1965)

  33. Takada, I.: Dedekind sums of \(\Gamma (N)\). Jpn. J. Math. 12, 401–411 (1986)

    Article  Google Scholar 

  34. Vassileva, I.: Dedekind eta function, Kronecker limit formula and Dedekind sum for the Hecke group. PhD thesis, University of Massachusetts Amherst (1996)

  35. Zagier, D.: Equivariant Pontrjagin Classes and Applications to Orbit Spaces. Applications of the G-Signature Theorem to Transformation Groups, Symmetric Products and Number Theory. Lecture Notes in Mathematics, vol. 290. Springer, Berlin (1972)

    MATH  Google Scholar 

  36. Zagier, D.: Modular Points, Modular Curves, vol. 1111, pp. 225–248. Modular Surfaces and Modular Forms Lecture Notes in Mathematics. Springer, Berlin (1985)

    MATH  Google Scholar 

  37. Zagier, D.: Modular parametrizations of elliptic curves. Can. Math. Bull. 28(3), 372–784 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Holger Then for his assistance in preparing the example in Sect. 7.2. We are very grateful for his computational results and, in general, for the generosity by which he shares his mathematical insight.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cormac O’Sullivan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J. Jorgenson and C. O’Sullivan are partially supported by PSC-CUNY grants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jorgenson, J., O’Sullivan, C. & Smajlović, L. Modular Dedekind symbols associated to Fuchsian groups and higher-order Eisenstein series. Res. number theory 6, 22 (2020). https://doi.org/10.1007/s40993-020-00198-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40993-020-00198-x

Navigation