Advertisement

Research in Number Theory

, 5:36 | Cite as

A complete study of the ramification for any separable cubic global function field

  • Sophie MarquesEmail author
  • Jacob Ward
Research
  • 15 Downloads

Abstract

We explicitly describe the ramified places in any separable cubic extension of a cubic global function field in terms of a unique given parameter. This is all done using the uniqueness of the purely cubic closure, which is a useful new tool for the study of cubic function fields. We give a notion of local standard forms, that is useful for many purposes, including classifying and computing of integral bases. We then determine explicitly the genus of any separable cubic extension of any global function field given the minimal polynomial of the extension. The formulae we obtain is particularly useful for further study owing to the well-understood and straightforward close relation between the parameter we define and ramification within the extension.

Keywords

Cubic Function field Finite field Genus Ramification 

Mathematics Subject Classification

(Primary ): 11T06 (Secondary): 11R32 11R16 11T55 11R58 

Notes

References

  1. 1.
    Conrad, K.: Galois groups of cubics and quartics in all characteristics. Unpublished noteGoogle Scholar
  2. 2.
    Jacobson Jr., M.J., Lee, Y., Scheidler, R., Williams, H.C.: Construction of all cubic function fields of a given square-free discriminant. Int. J. Number Theory 11(6), 1839–1885 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Marques, S., Ward, K.: A complete classification of cubic function fields over any finite field. Preprint (2017)Google Scholar
  4. 4.
    Marques, S.: Generic polynomials for cyclic function field extensions over certain finite fields. Eur. J. Math. 4(2), 585–602 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Marques, S., Ward, K.: Cubic fields: a primer. Eur. J. Math. 5(2), 551–570 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Marques, S., Ward, K.: An explicit triangular integral basis for any separable cubic extension of a function field. Eur. J. Math. 5, 1252–1266 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Neukirch, J.: Algebraic Number Theory. Springer, Berlin (1999)CrossRefGoogle Scholar
  8. 8.
    Scheidler, R.: Construction of all cubic fields of a fixed fundamental discriminant. In: Hambleton, S., Williams, H.C. (eds.) Cubic Fields With Geometry, pp. 173–302. Springer, New York (2018)Google Scholar
  9. 9.
    Scheidler, R., Webster, J., Landquist, E., Rozenhart, P., Wu, Q.: An explicit treatment of cubic function fields with applications. Can. J. Math. 62(4), 787–807 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Scheidler, R., Wu, Q.: An explicit treatment of biquadratic function fields. Contrib. Discret. Math. 2(1), 43–60 (2007)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Stichtenoth, H.: Algebraic Function Fields and Codes. Springer, Berlin (2009)zbMATHGoogle Scholar
  12. 12.
    Tutdere, S., Anbar, N., Stichtenoth, H.: On ramification in the compositum of function fields. Bull. Braz. Math. Soc. 40(4), 539–552 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Villa-Salvador, G.D.: Topics in the Theory of Algebraic Function Fields. Birkhäuser, Boston (2006)zbMATHGoogle Scholar
  14. 14.
    Wu, Q., Scheidler, R.: On ramification in the compositum of function fields. Bull. Braz. Math. Soc. 4, 539–552 (2009)MathSciNetGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of StellenboschStellenboschSouth Africa

Personalised recommendations