Research in Number Theory

, 5:30 | Cite as

The special values of L-functions at \(s=1\) of theta products of weight 3

  • Ryojun ItoEmail author


In this paper, we compute the special values of L-functions at \(s=1\) of some theta products of weight 3, and express them in terms of special values of generalized hypergeometric functions.


Theta series L-value for theta products Generalized hypergeometric function 

Mathematics Subject Classification

11F27 11F67 33C20 



  1. 1.
    Berndt, B.C.: Ramanujan’s Notebooks, Part II. Springer, New York, NY (1989)CrossRefGoogle Scholar
  2. 2.
    Berndt, B.C.: Ramanujan’s Notebooks, Part III. Springer, New York, NY (1991)CrossRefGoogle Scholar
  3. 3.
    Berndt, B.C.: Ramanujan’s Notebooks, Part V. Springer, New York, NY (1998)CrossRefGoogle Scholar
  4. 4.
    Borwein, J.M., Borwein, P.B.: Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity. Wiley, Hoboken (1987)zbMATHGoogle Scholar
  5. 5.
    Borwein, J.M., Borwein, P.B.: A cubic counterpart of Jacobi’s identity and the AGM. Trans. Am. Math. Soc. 323(2), 691–701 (1991)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Borwein, J.M., Borwein, P.B., Garvan, F.G.: Some cubic modular identities of Ramanujan. Trans. Am. Math. Soc. 343, 35–47 (1994)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Ito, R.: The Beilinson conjectures for CM elliptic curves via hypergeometric functions. Ramanujan J. 45, 433–449 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    NIST Digital Library of Mathematical Functions.
  9. 9.
    Otsubo, N.: Certain values of Hecke L-functions and generalized hypergeometric functions. J. Number Theory 131, 648–660 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Rogers, M.: Boyd’s conjectures for elliptic curves of conductor 11, 19, 39, 48 and 80, unpublished notes (2010)Google Scholar
  11. 11.
    Rogers, M., Zudilin, W.: From L-series of elliptic curves to Mahler measures. Compos. Math. 148, 385–414 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rogers, M., Wan, J.G., Zucker, I.J.: Moments of elliptic integrals and critical L-values. Ramanujan J. 37, 113–130 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Shimura, G.: Elementary Dirichlet Series and Modular Forms. Springer, New York (2007)CrossRefGoogle Scholar
  14. 14.
    Slater, L.J.: Generalized Hypergeometric Functions. Cambridge University Press, Cambridge (1966)zbMATHGoogle Scholar
  15. 15.
    Zudilin, W.: Period(d)ness of \(L\)-values. Number theory and related fields. Springer Proc. Math. Stat. 43, 381–395 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Informatics, Graduate School of ScienceChiba UniversityInageJapan

Personalised recommendations