Skip to main content
Log in

Apéry-like numbers and families of newforms with complex multiplication

  • Research
  • Published:
Research in Number Theory Aims and scope Submit manuscript

Abstract

Using Hecke characters, we construct two infinite families of newforms with complex multiplication, one by \({\mathbb {Q}}(\sqrt{-3})\) and the other by \({\mathbb {Q}}(\sqrt{-2})\). The values of the p-th Fourier coefficients of all the forms in each family can be described by a single formula, which we provide explicitly. This allows us to establish a formula relating the p-th Fourier coefficients of forms of different weights, within each family. We then prove congruence relations between the p-th Fourier coefficients of these newforms at all odd weights and values coming from two of Zagier’s sporadic Apéry-like sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlgren, S.: Gaussian hypergeometric series and combinatorial congruences. In: Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics, Gainesville, FL, pp. 1–12, Dev. Math., 4, Kluwer Academic Publisher, Dordrecht (2001)

  2. Ahlgren, S., Ono, K.: A Gaussian hypergeometric series evaluation and Apéry number congruences. J. Reine Angew. Math. 518, 187–212 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Almkvist, G., Zudilin, W.: Differential Equations, Mirror Maps and Zeta Values Mirror Symmetry, V. AMS/IP Studies in Advanced Mathematics, vol. 38, pp. 481–515. American Mathematical Society, Providence, RI (2006)

    MATH  Google Scholar 

  4. Apéry, R.: Irrationalité de \(\zeta (2)\) et \(\zeta (3)\). Astérisque 61, 11–13 (1979)

    MATH  Google Scholar 

  5. Beukers, F.: A note on the irrationality of \(\zeta (2)\) and \(\zeta (3)\). Bull. Lond. Math. Soc. 11(3), 268–272 (1979)

    Article  Google Scholar 

  6. Beukers, F.: On Dwork’s accessory parameter problem. Math. Z. 241(2), 425–444 (2002)

    Article  MathSciNet  Google Scholar 

  7. Brown, F.: Irrationality proofs for zeta values, moduli spaces and dinner parties. Mosc. J. Comb. Number Theory 6(2–3), 102–165 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Chan, H., Cooper, S., Sica, F.: Congruences satisfied by Apéry-like numbers. Int. J. Number Theory 6(1), 89–97 (2010)

    Article  MathSciNet  Google Scholar 

  9. Cooper, S.: Sporadic sequences, modular forms and new series for 1/\(\pi \). Ramanujan J. 29(1–3), 163–183 (2012)

    Article  MathSciNet  Google Scholar 

  10. Cox, D.: Primes of the Form \(x^2+ny^2\), Fermat, Class Field Theory and Complex Multiplication. A Wiley-Interscience Publication. Wiley, New York (1989)

    Google Scholar 

  11. Delaygue, E.: Arithmetic properties of Apéry-like numbers. Compos. Math. 154(2), 249–274 (2018)

    Article  MathSciNet  Google Scholar 

  12. Malik, A., Straub, A.: Divisibility properties of sporadic Apéry-like numbers. Res. Number Theory 2, 26 (2016)

    Article  Google Scholar 

  13. McCarthy, D., Osburn, R., Straub, A.: Sequences, modular forms and cellular integrals. Math. Proc. Camb. Philos. Soc. https://doi.org/10.1017/S0305004118000774 (2018)

  14. Osburn, R., Sahu, B.: Supercongruences for Apéry-like numbers. Adv. Appl. Math. 47(3), 631–638 (2011)

    Article  MathSciNet  Google Scholar 

  15. Osburn, R., Sahu, B.: Congruences via modular forms. Proc. Am. Math. Soc. 139(7), 2375–2381 (2011)

    Article  MathSciNet  Google Scholar 

  16. Osburn, R., Sahu, B., Straub, A.: Supercongruences for sporadic sequences. Proc. Edinb. Math. Soc. 59(2), 503–518 (2016)

    Article  MathSciNet  Google Scholar 

  17. Ribet, K.: Galois representations attached to eigenforms with Nebentypus, modular functions of one variable. In: Proceedings of Second International Conference University of Bonn, Bonn, 1976), pp. 17–51. Lecture Notes in Mathematics, vol. 601. Springer, Berlin (1977)

  18. Stienstra, J., Beukers, F.: On the Picard–Fuchs equation and the formal Brauer group of certain elliptic \(K3\)-surfaces. Math Ann. 271, 269–304 (1985)

    Article  MathSciNet  Google Scholar 

  19. Verrill, H.: Congruences related to modular forms. Int. J. Number Theory 6(6), 1367–1390 (2010)

    Article  MathSciNet  Google Scholar 

  20. Zagier, D.: Integral solutions of Apéry-like recurrence equations. In: Groups and symmetries, CRM Proc. Lecture Notes, 47, American Mathematical Society, Providence, RI, pp. 349–366 (2009)

Download references

Author's contributions

Acknowledgements

The second author is supported by a grant from the Simons Foundation (353329, Dermot McCarthy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dermot McCarthy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez, A., McCarthy, D. & Young, D. Apéry-like numbers and families of newforms with complex multiplication. Res. number theory 5, 5 (2019). https://doi.org/10.1007/s40993-018-0145-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40993-018-0145-7

Mathematics Subject Classification

Navigation