Skip to main content
Log in

Rankin–Cohen brackets and Serre derivatives as Poincaré series

  • Research
  • Published:
Research in Number Theory Aims and scope Submit manuscript

Abstract

We give expressions for the Serre derivatives of Eisenstein and Poincaré series as well as their Rankin–Cohen brackets with arbitrary modular forms in terms of the Poincaré averaging construction, and derive several identities for the Ramanujan tau function as applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diamantis, N., O’Sullivan, C.: Kernels for products of \(L\)-functions. Algebra Number Theory 7(8), 1883–1917 (2013). https://doi.org/10.2140/ant.2013.7.1883. ISSN 1937-0652

    Article  MathSciNet  MATH  Google Scholar 

  2. Gouvêa, F.: Non-ordinary primes: a story. Exp. Math. 6(3), 195–205 (1997). ISSN: 1058-6458. http://projecteuclid.org/euclid.em/1047920420

    Article  MathSciNet  Google Scholar 

  3. Herrero, S.D.: The adjoint of some linear maps constructed with the Rankin–Cohen brackets. Ramanujan J. 36(3), 529–536 (2015). ISSN: 1382-4090. https://doi.org/10.1007/s11139-013-9536-5

    Article  MathSciNet  Google Scholar 

  4. Iwaniec, H.: Topics in Classical Automorphic Forms. Graduate Studies in Mathematics, vol. 17. American Mathematical Society, Providence (1997). ISBN: 0-8218-0777-3. https://doi.org/10.1090/gsm/017

  5. Kohnen, W.: Cusp forms and special values of certain Dirichlet series. Math. Z. 207(4), 657–660 (1991). ISSN: 0025-5874. https://doi.org/10.1007/BF02571414

    Article  MathSciNet  Google Scholar 

  6. Kumar, A.: The adjoint map of the Serre derivative and special values of shifted Dirichlet series. ISSN 0022-314X. J. Number Theory 177, 516–527 (2017). https://doi.org/10.1016/j.jnt.2017.01.011

    Article  MathSciNet  Google Scholar 

  7. Ono, K.: Unearthing the visions of a master: harmonic Maass forms and number theory. In Current Developments in Mathematics, 2008, pp. 347–454. International Press, Somerville (2009)

    Article  Google Scholar 

  8. Williams, B.: Poincaré square series for the Weil representation. Ramanujan J. (2018). https://doi.org/10.1007/s11139-017-9986-2

  9. Zagier, D.: Modular Forms whose Fourier Coefficients Involve Zeta-Functions of Quadratic Fields. Lecture Notes in Mathematics, vol. 627, pp. 105–169. Springer, Berlin (1977)

    Google Scholar 

  10. Zagier, D.: Modular forms and differential operators. Proc. Indian Acad. Sci. Math. Sci. 104(1), 57–75 (1994). ISSN: 0253-4142. https://doi.org/10.1007/BF02830874 (K. G. Ramanathan memorial issue)

    Article  MathSciNet  Google Scholar 

  11. Zagier, D.: Elliptic modular forms and their applications. In The 1–2–3 of Modular Forms. Universitext, pp. 1–103. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-74119-0_1

    MATH  Google Scholar 

Download references

Author's contributions

Acknowlegements

I thank the reviewers for pointing out a mistake in Remark 6 in an earlier version of this note, and also for several suggestions that improved the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandon Williams.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, B. Rankin–Cohen brackets and Serre derivatives as Poincaré series. Res. number theory 4, 37 (2018). https://doi.org/10.1007/s40993-018-0130-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40993-018-0130-1

Mathematics Subject Classification

Navigation