Skip to main content
Log in

Non-Archimedean Hénon maps, attractors, and horseshoes

  • Research
  • Published:
Research in Number Theory Aims and scope Submit manuscript

Abstract

We study the dynamics of the Hénon map defined over complete, locally compact non-Archimedean fields of odd residue characteristic. We establish basic properties of its one-sided and two-sided filled Julia sets, and we determine, for each Hénon map, whether these sets are empty or nonempty, whether they are bounded or unbounded, and whether they are equal to the unit ball or not. On a certain region of the parameter space we show that the filled Julia set is an attractor. We prove that, for infinitely many distinct Hénon maps over \({\mathbb {Q}}_3\), this attractor is infinite and supports an SRB-type measure describing the distribution of all nearby forward orbits. We include some numerical calculations which suggest the existence of such infinite attractors over \({\mathbb {Q}}_5\) and \({\mathbb {Q}}_7\) as well. On a different region of the parameter space, we show that the Hénon map is topologically conjugate on its filled Julia set to the two-sided shift map on the space of bisequences in two symbols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anashin, V., Khrennikov, A.: Applied algebraic dynamics. de Gruyter expositions in mathematics, vol. 49. Walter de Gruyter & Co., Berlin (2009)

    Book  MATH  Google Scholar 

  2. Arrowsmith, D.K., Vivaldi, F.: Some \(p\)-adic representations of the Smale horseshoe. Phys. Lett. A 176, 292–294 (1993)

    Article  MathSciNet  Google Scholar 

  3. Bedford, E., Smillie, J.: External rays in the dynamics of polynomial automorphisms of C\(^2\). In: Complex geometric analysis in Pohang of contemporary mathematics-American mathematical society, vol. 222, pp. 41–79. Providence (1997)

  4. Benedetto, R., Briend, J.-Y., Perdry, H.: Dynamique des polynômes quadratiques sur les corps locaux. J. Théor. Nr. Bordx. 19, 325–336 (2007)

    Article  MATH  Google Scholar 

  5. Benedicks, M., Carleson, L.: The dynamics of the Hénon map. Ann. Math. 133(2), 73–169 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Billingsley, P.: Convergence of probability measures, vol. 2. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  7. Denis, L.: Points périodiques des automorphismes affines. J. Reine Angew. Math. 467, 157–167 (1995)

    MathSciNet  MATH  Google Scholar 

  8. Devaney, R.: An Introduction to Chaotic Dynamical Systems, 2nd edn. Addison-Wesley, Redwood City (1989)

    MATH  Google Scholar 

  9. Devaney, R., Nitecki, Z.: Shift automorphisms in the Hénon mapping. Commun. Math. Phys. 67, 137–146 (1979)

    Article  MATH  Google Scholar 

  10. Friedland, S., Milnor, J.: Dynamical properties of plane polynomial automorphisms. Ergod. Theory Dynam. Syst. 9, 67–99 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gouvêa, F.Q.: \(p\)-adic numbers, 2nd edn. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  12. Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50, 69–77 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ingram, P.: Canonical heights for Hénon maps. Proc. Lond. Math. Soc 108(3), 780–808 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Marcello, S.: Sur la dynamique arithmétique des automorphismes de l’espace affine. Bull. Soc. Math. France 131, 229–257 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Milnor, J.: Dynamics in One Complex Variable. Friedr. Vieweg & Sohn, Braunschweig (1999)

    MATH  Google Scholar 

  16. Mora, L., Viana, M.: Abundance of strange attractors. Acta Math. 171, 1–71 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Moser, J.: Stable and random motions in dynamical systems, Princeton Landmarks in Mathematics. In: Holmes, J. (ed.) With special emphasis on celestial mechanics, Reprint of the 1973 original. Princeton University Press, Princeton (2001)

    Google Scholar 

  18. Robinson, C.: Dynamical systems, studies in advanced mathematics. Stability, symbolic dynamics, and chaos, 2nd edn. CRC Press, Boca Raton (1999)

    Google Scholar 

  19. Ruelle, D.: What is \(\dots \) a strange attractor? Notices Amer. Math. Soc. 53, 764–765 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Silverman, J.H.: Geometric and arithmetic properties of the Hénon map. Math. Z. 215, 237–250 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Woodcock, C.F., Smart, N.P.: \(p\)-adic chaos and random number generation. Exp. Math. 7, 333–342 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Young, L.-S.: What are SRB measures, and which dynamical systems have them? J. Stat. Phys. 108, 733–754 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clayton Petsche.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allen, K., DeMark, D. & Petsche, C. Non-Archimedean Hénon maps, attractors, and horseshoes. Res. number theory 4, 5 (2018). https://doi.org/10.1007/s40993-018-0105-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40993-018-0105-2

Keywords

Mathematics Subject Classification

Navigation