Nonvanishing modulo of Fourier coefficients of Jacobi forms


Let \(\phi = \sum _{r^{2} \leq 4mn}c(n,r)q^{n}\zeta ^{r}\) be a Jacobi form of weight k (with k>2 if ϕ is not a cusp form) and index m with integral algebraic coefficients which is an eigenfunction of all Hecke operators T p ,(p,m)=1, and which has at least one nonvanishing coefficient c(n ,r ) with r prime to m. We prove that for almost all primes there are infinitely many fundamental discriminants D=r 2−4m n<0 prime to m with ν (c(n,r))=0, where ν denotes a continuation of the -adic valuation on \(\mathbb {Q}\) to an algebraic closure. As applications we show indivisibility results for special values of Dirichlet L-series and for the central critical values of twisted L-functions of even weight newforms.


  1. 1

    Bruinier, JH: Nonvanishing modulo of Fourier coefficients of half-integral weight modular forms. Duke Math. J. 98, 595–611 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  2. 2

    Bruinier, JH: Borcherds Products on O(2,l) and Chern Classes of Heegner Divisors. Lecture Notes in Mathematics, vol. 1780. Springer, Berlin Heidelberg (2002).

    Google Scholar 

  3. 3

    Carlitz, L: Arithmetic properties of generalized Bernoulli numbers. J. Reine Angew. Math. 202, 174–182 (1959).

    MathSciNet  MATH  Google Scholar 

  4. 4

    Diamond, F, Im, J: Modular forms and modular curves. Can. Math. Soc. Conf. Proc. 17, 39–132 (1995).

    MathSciNet  Google Scholar 

  5. 5

    Eichler, M, Zagier, D: The Theory of Jacobi Forms. Birkhäuser, Boston-Basel-Stuttgart (1985).

    Google Scholar 

  6. 6

    Gross, B, Kohnen, W, Zagier, D: Heegner points and derivatives of L-series. II. Mathematische Ann. 278, 497–562 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  7. 7

    Katz, N: p-adic properties of modular schemes and modular forms. Modular Funct. One Variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Math.350, 69–190 (1973).

    Google Scholar 

  8. 8

    Kohnen, W: A simple remark on eigenvalues of Hecke operators on Siegel modular forms. Abh. Math. Sem. Univ. Hamburg. 57, 33–36 (1986).

    Article  MathSciNet  Google Scholar 

  9. 9

    Kohnen, W, Ono, K: Indivisibility of class numbers of imaginary quadratic fields and orders of Tate-Shafarevich groups of elliptic curves with complex multiplication. Invent. Math. 135(2), 387–398 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  10. 10

    Martin, Y, Osses, D: On the analogue of Weil’s converse theorem for Jacobi forms and their lift to half-integral weight modular forms. Ramanujan J. 26, 155–183 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  11. 11

    Ono, K, Skinner, C: Fourier coefficients of half-integral weight modular forms modulo . Ann. Math. 147, 453–470 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  12. 12

    Scheithauer, NR: The Weil representation of \(\text {SL}_{2}(\mathbb {Z})\) and some applications. Int Math Res Notices. 2009(8), 1488–1545 (2009).

    MathSciNet  MATH  Google Scholar 

  13. 13

    Shimura, G: On modular forms of half-integral weight. Ann. Math. 97, 440–481 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  14. 14

    Skoruppa, N-P: Developments in the theory of Jacobi forms. In: Kuznetsov, N, Bykovsky, V (eds.)International Conference on Automorphic Functions and their Applications, Khabarovsk, 27 June – 4 July 1988, pp. 167–185, The USSR Academy of Science, Khabarovsk’ (1990).

  15. 15

    Skoruppa, N-P, Zagier, D: Jacobi forms and a certain space of modular forms. Inventiones Mathematicae. 94, 113–146 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  16. 16

    Waldspurger, J-L: Sur les coefficients de Fourier des formes modulaires de poids demi-entier. J. Math. Pures Appl. 60, 375–484 (1981).

    MathSciNet  MATH  Google Scholar 

Download references


I would like to thank Jan H. Bruinier for suggesting the topic of this work to me and for many helpful discussions.

This work was partially supported by DFG grant BR-2163/4-1.

Author information



Corresponding author

Correspondence to Markus Schwagenscheidt.

Additional information

Competing interests

The author declares that he has no competing interests.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schwagenscheidt, M. Nonvanishing modulo of Fourier coefficients of Jacobi forms. Res. number theory 2, 4 (2016).

Download citation


  • Nonvanishing
  • Indivisibility
  • Fourier coefficients
  • Jacobi forms
  • Special values of L-functions