Anderson, T, Rolen, L, Stoehr, R: Benford’s Law for coefficients of modular forms and partition functions. Proc. Am. Math. Soc. 139(5), 1533–1541 (2011).
MATH
MathSciNet
Article
Google Scholar
Abramowitz, M, Stegun, I: Handbook of mathematical functions. Natl. Bur. Stan. Appl. Math. Ser. 55, 257 (1964).
MathSciNet
Google Scholar
Barrett, O, Firk, FWK, Miller, SJ, Turnage-Butterbaugh, C: From quantum systems to L-functions: pair correlation statistics and beyond, to appear in open problems in mathematics (Nash, JJR, Rassias, MTH, eds.)Springer-Verlag.
Becker, T, Corcoran, TC, Greaves-Tunnell, A, Iafrate, JR, Jing, J, Miller, SJ, Porfilio, JD, Ronan, R, Samranvedhya, J, Strauch, F: Benford’s law and continuous dependent random variables. arXiv version. http://arxiv.org/pdf/1309.5603 [preprint 2015].
Benford, F: The law of anomalous numbers. Proc. Am. Philos. Soc. 78, 551–572 (1938).
Google Scholar
Berger, A, Hill, TP: Benford online bibliography. http://www.benfordonline.net.
Berger, A, Hill, TP: A basic theory of Benford’s law. Probab. Surv. 8, 1–126 (2011).
MATH
MathSciNet
Article
Google Scholar
Berger, A, Hill, TP: An introduction to Benford’s law. Princeton University Press, Princeton, NJ (2015).
Book
Google Scholar
Brown, J, Duncan, R: Modulo one uniform distribution of the sequence of logarithms of certain recursive sequences. Fibonacci Q. 8, 482–486 (1970).
MATH
MathSciNet
Google Scholar
Conrey, JB, Farmer, D, Keating, P, Rubinstein, M, Snaith, N: Integral moments of L-functions. Proc. London Math. Soc. (3). 91(1), 33–104 (2005).
MATH
MathSciNet
Article
Google Scholar
Diaconis, P: The distribution of leading digits and uniform distribution mod 1. Ann. Probab. 5, 72–81 (1979).
MathSciNet
Article
Google Scholar
Erdős, L, Ramirez, JA, Schlein, B, Yau, H-T: Bulk Universality for Wigner Matrices. Comm. Pure Appl Math. 63(70), 895–925 (2010).
MathSciNet
Google Scholar
Erdős, L, Schlein, B, Yau, H-T: Wegner estimate and level repulsion for Wigner random matrices. Int. Math. Res. Not. IMRN. (3), 436–479 (2010).
Firk, FWK, Miller, SJ: Nuclei, Primes and the Random Matrix Connection. Symmetry. 1, 64–105 (2009). doi:10.3390/sym1010064.
MathSciNet
Article
Google Scholar
Hayes, B: The spectrum of Riemannium. Am. Sci. 91(4), 296–300 (2003).
Article
Google Scholar
Hewitt, E, Ross, K: Abstract harmonic analysis, Vol. I. Structure of topological groups, integration theory, group representations (second edition), fundamental principles of mathematical sciences, Vol. 115. Springer-Verlag, Berlin–New York (1979).
Google Scholar
Hill, T: The first-digit phenomenon. Am.Sci. 86, 358–363 (1996).
Article
Google Scholar
Hill, T: A statistical derivation of the significant-digit law. Stat. Sci. 10, 354–363 (1996).
Google Scholar
Hurlimann, W: Benford’s law from 1881 to 2006. http://arxiv.org/pdf/math/0607168.
Katz, N, Sarnak, P: Random matrices, Frobenius eigenvalues and Monodromy, Vol. 45. AMS, Providence (1999).
MATH
Google Scholar
Katz, N, Sarnak, P: Zeros of zeta functions and symmetries. Bull. AMS. 36, 1–26 (1999).
MATH
MathSciNet
Article
Google Scholar
Keating, JP, Snaith, NC: Random matrix theory and ζ(1/2+i
t). Comm. Math. Phys. 214(1), 57–89 (2000).
MATH
MathSciNet
Article
Google Scholar
Keating, JP, Snaith, NC: Random matrix theory and L-functions at s=1/2. Comm. Math. Phys. 214(1), 91–110 (2000).
MATH
MathSciNet
Article
Google Scholar
Keating, JP, Snaith, NC: Random matrices and L-functions, random matrix theory. J. Phys. A. 36(12), 2859–2881 (2003).
MATH
MathSciNet
Article
Google Scholar
Kontorovich, A, Miller, SJ: Benford’s law, values of L-functions and the 3x+1 problem. Acta Arith. 120, 269–297 (2005).
MATH
MathSciNet
Article
Google Scholar
Knuth, D: The art of computer programming, Volume 2: seminumerical algorithms. 3rd edition. Addison-Wesley, MA (1997).
Google Scholar
Lagarias, J, Soundararajan, K: Benford’s law for the 3x+1 function. J. London Math. Soc. 74, 289–303 (2006). ser. 2 no. 2.
MATH
MathSciNet
Article
Google Scholar
Mebane, W: Detecting attempted election theft: vote counts, voting machines and Benford’s law. Prepared for delivery at the 2006 Annual meeting of the Midwest Political Science Association, April 20-23. Palmer House, Chicago.
Mezzadri, F: How to generate random matrices from the classical compact groups. Notices of the AMS. 54, 592–604 (2007).
MATH
MathSciNet
Google Scholar
Miller, SJ, (Ed): Benford’s law: theory and applications. Princeton University Press, Princeton, NJ (2015).
Google Scholar
Miller, SJ, Novikoff, T, Sabelli, A: The distribution of the second largest eigenvalue in families of random regular graphs. Exp. Math. 17(2), 231–244 (2008).
MATH
Article
Google Scholar
Montgomery, H: The pair correlation of zeros of the zeta function, Analytic number theory. Proc. Sympos. Pure Math. Amer. Math. Soc. Providence. 24, 181–193 (1973).
Article
Google Scholar
Newcomb, S: Note on the frequency of use of the different digits in natural numbers. Amer. J. Math. 4, 39–40 (1881).
MATH
MathSciNet
Article
Google Scholar
Nigrini, M: Using digital frequencies to detect fraud. The White Paper. 8(2), 3–6 (1994).
Google Scholar
Odlyzko, A: On the distribution of spacings between zeros of the zeta function. Math. Comp. 48(177), 273–308 (1987).
MATH
MathSciNet
Article
Google Scholar
Odlyzko, A: The 1022-nd zero of the Riemann zeta function. In: van Frankenhuysen, M, Lapidus, ML (eds.)Proc. Conference on dynamical, Spectral and Arithmetic zeta-functions, p. 2001. Amer. Math. Soc., Contemporary Math. series, San Antonio, TX.
Pinkham, R: On the distribution of first significant digits. The Ann. Math. Stat. 32(4), 1223–1230 (1961).
MATH
MathSciNet
Article
Google Scholar
Raimi, RA: The first digit problem. Amer. Math. Monthly. 83(7), 521–538 (1976).
MATH
MathSciNet
Article
Google Scholar
Tao, T, Vu, V: From the littlewood-offord problem to the circular law: universality of the spectral distribution of random matrices. Bull. Amer. Math. Soc. 46, 377–396 (2009).
MATH
MathSciNet
Article
Google Scholar
Tao, T, Vu, V: Random matrices: universality of local eigenvalue statistics up to the edge. Comm. Math. Phys. 298(2), 549–572 (2010).
MATH
MathSciNet
Article
Google Scholar
Tracy, CA, Widom, H: The Distributions of Random Matrix Theory and their Applications. In: Sidoravičius, V (ed.)New Trends in Mathematical Physics. Selected Contributions on the 15th International Congress on Mathematical Physics, pp. 753–765. Springer-Verlag, Netherlands (2009).
Google Scholar
Varadarajan, VS: Lie groups, Lie algebras and their representations. Prentice-Hall, New York (1974).
MATH
Google Scholar