Skip to main content

Spatial Regression Analysis of Poverty in R

Abstract

Poverty has been studied across many social science disciplines, resulting in a large body of literature. Scholars of poverty research have long recognized that the poor are not uniformly distributed across space. Understanding the spatial aspect of poverty is important because it helps us understand place-based structural inequalities. There are many spatial regression models, but there is a learning curve to learn and apply them to poverty research. This manuscript aims to introduce the concepts of spatial regression modeling and walk the reader through the steps of conducting poverty research using R: standard exploratory data analysis, standard linear regression, neighborhood structure and spatial weight matrix, exploratory spatial data analysis, and spatial linear regression. We also discuss the spatial heterogeneity and spatial panel aspects of poverty. We provide code for data analysis in the R environment and readers can modify it for their own data analyses. We also present results in their raw format to help readers become familiar with the R environment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Anselin, L. (1988). Spatial econometrics: Methods and models. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  2. Anselin, L. (1990). Spatial dependence and spatial structural instability in applied regression analysis. Journal of Regional Science, 30, 185–207.

    Article  Google Scholar 

  3. Anselin, L., & Bera, A. (1998). Spatial dependence in linear regression models with an introduction to spatial econometrics. In A. Ullah & D. Giles (Eds.), Handbook of applied economic statistics (pp. 237–289). New York, NY: Marcel Dekker.

    Google Scholar 

  4. Baller, R. D., & Richardson, K. K. (2002). Social integration, imitation, and the geographic patterning of suicide. American Sociological Review, 67, 873–888.

    Article  Google Scholar 

  5. Baltagi, B., & Li, D. (2004). Prediction in the panel data model with spatial autocorrelation. In L. Anselin, R. J. G. M. Florax, & S. Rey (Eds.), Advances in spatial econometrics: Methodology, tools, and applications (pp. 283–295). New York, NY: Springer.

    Chapter  Google Scholar 

  6. Bennett, K. J., Probst, J. C., & Pumkam, C. (2011). Obesity among working age adults: The role of county-level persistent poverty in rural disparities. Health and Place, 17, 1174–1181.

    Article  Google Scholar 

  7. Bivand, R., Pebesma, E., & Gomez-Rubio, V. (2013). Applied spatial data analysis with R. New York, NY: Wiley.

    Book  Google Scholar 

  8. Cressie, N. (1993). Statistics for spatial data. New York, NY: Wiley.

    Book  Google Scholar 

  9. Curtis, K. J., Lee, J., O’Connell, H. A., & Zhu, J. (2018). The spatial distribution of poverty and the long reach of the industrial makeup of places: New evidence on spatial and temporal regimes. Rural Sociology. https://doi.org/10.1111/ruso.12216.

    Article  Google Scholar 

  10. Curtis, K. J., Voss, P. R., & Long, D. D. (2012). Spatial variation in poverty-generating processes: Child poverty in the United States. Social Science Research, 41(1), 146–159.

    Article  Google Scholar 

  11. Duncan, C. M. (1999). Worlds apart: Why poverty persists in rural America. New Haven, CT: Yale University Press.

    Google Scholar 

  12. Dutilleul, P. R. L. (2011). Spatio-temporal heterogeneity: Concepts and analyses. New York, NY: Cambridge University Press.

    Google Scholar 

  13. Elhorst, J. P. (2001). Dynamic models in space and time. Geographical Analysis, 33, 119–140.

    Article  Google Scholar 

  14. Elhorst, J. P. (2010). Applied spatial econometrics: Raising the bar. Spatial Economic Analysis, 5(1), 9–28.

    Article  Google Scholar 

  15. Fotheringham, A. S., Brunsdon, M., & Charlton, M. (1998). Geographically weighted regression: A natural evolution of the expansion method for spatial data analysis. Environment and Planning A: Economy and Space, 30, 1905–1927.

    Article  Google Scholar 

  16. Fox, J., Weisberg, S. (2011). An R companion to applied regression, 2nd edn. Thousand Oaks CA: Sage. http://socserv.socsci.mcmaster.ca/jfox/Books/Companion.

  17. Goetz, S. J., & Swaminathan, H. (2006). Wal-Mart and county-wide poverty. Social Science Quarterly, 87, 211–226.

    Article  Google Scholar 

  18. Golgher, A. B., & Voss, P. R. (2016). How to interpret the coefficients of spatial models: Spillovers, direct and indirect effects. Spatial Demography, 4, 175–2015.

    Article  Google Scholar 

  19. Greenlee, R. T., & Howe, H. L. (2009). County-level poverty and distant stage cancer in the United States. Cancer Causes and Control, 20, 989–1000.

    Article  Google Scholar 

  20. Huang, B., Wu, B., & Barry, M. (2010). Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. International Journal of Geographical Information Science, 24(3), 383–401.

    Article  Google Scholar 

  21. Iceland, J. (2013). Poverty in America: A handbook (3rd ed.). Berkeley, CA: University of California.

    Google Scholar 

  22. Jennings, J. (1999). Persistent poverty in the United States: Review of theories and explanations. In Louis Kushnick & James Jennings (Eds.), A new introduction to poverty: The role of race, power and politics (pp. 13–38). New York, NY: New York University Press.

    Google Scholar 

  23. Lee, L., & Yu, J. (2010). Some recent developments in spatial panel data models. Regional Science and Urban Economics, 40(5), 255–271.

    Article  Google Scholar 

  24. LeSage, J. P. (1999). A spatial econometric examination of China’s economic growth. Geographic Information Sciences, 5, 143–153.

    Google Scholar 

  25. LeSage, J. P., & Pace, R. K. (2009). Introduction to spatial econometrics. Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  26. Levernier, W., Partridge, M. D., & Rickman, D. S. (2000). The causes of regional variations in U.S. poverty: A cross-country analysis. Journal of Regional Science, 40, 473–497.

    Article  Google Scholar 

  27. Lichter, D. T., & Johnson, K. M. (2007). The changing spatial concentration of america’s rural poor population. Rural Sociology, 72, 331–358.

    Article  Google Scholar 

  28. Lobao, L. M., Hooks, G., & Tickamyer, A. R. (2008). Poverty and inequality across space: Sociological reflections on the missing-middle subnational scale. Cambridge Journal of Regions, Economy and Society, 1, 89–113.

    Article  Google Scholar 

  29. Lovelace, R., Nowosad, J., & Muenchow, J. (2019). Geocomputation with R. Boca Raton: CRC Press.

    Google Scholar 

  30. Nord, M., Luloff, A. E., & Jensen, L. (1995). Migration and the spatial concentration of poverty. Rural Sociology, 60, 399–415.

    Article  Google Scholar 

  31. Patton, M., & McErlean, S. (2003). Spatial effects within the agricultural land market in Northern Ireland. Journal of Agricultural Economics, 54, 35–54.

    Article  Google Scholar 

  32. Pebesma, E. (2018). Simple features for R: Standardized support for spatial vector data. The R Journal, 10(1), 439–446.

    Article  Google Scholar 

  33. Pebesma, E., Bivand, R., Rowlingson, B., Gomez-Rubio, V., Hijmans, R., Sumner, M., et al. (2018). Package ‘sp’. R package version 1.3-1. https://cran.r-project.org/web/packages/sp/sp.pdf.

  34. Sandoval, D. A., Mark, R., & Thomas, H. (2009). The increasing risk of poverty across the american life course. Demography, 46(4), 717–737.

    Article  Google Scholar 

  35. Sparks, C. (2013a). Spatial analysis in R: Part 1. Spatial Demography, 1, 131–139.

    Article  Google Scholar 

  36. Sparks, C. (2013b). Spatial analysis in R: Part 2. Spatial Demography, 1, 219–226.

    Article  Google Scholar 

  37. Thiede, B., Kim, H., & Valasik, M. (2018). The spatial concentration of America’s rural poor population: A postrecession update. Rural Sociology, 83, 109–144.

    Article  Google Scholar 

  38. Tickamyer, A. R., & Duncan, C. M. (1990). Poverty and opportunity. Annual Review of Sociology, 16, 67–86.

    Article  Google Scholar 

  39. Vaughan, A. S., Rosenberg, E., Shouse, R. L., & Sullivan, P. S. (2014). Connecting race and place: A county-level analysis of White, Black, and Hispanic HIV prevalence, poverty, and level of urbanization. American Journal of Public Health, 104, 77–84.

    Article  Google Scholar 

  40. Voss, P. R., Long, D. D., Hammer, R. B., & Friedman, S. (2006). County child poverty rates in the US: A spatial regression approach. Population Research and Policy Review, 25, 369–391.

    Article  Google Scholar 

  41. Walker, K. (2018). Tigris: Load census TIGER/Line Shapefiles. R package version 0.7. https://CRAN.R-project.org/package=tigris.

  42. Weber, B., Jensen, L., Miller, K., Mosley, J., & Fisher, M. (2005). A critical review of rural poverty literature: Is there truly a rural effect? International Regional Science Review, 28, 381–414.

    Article  Google Scholar 

  43. Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. New York: Springer.

    Book  Google Scholar 

  44. Wickham, W., Hester, J., François, R. (2018a). readr: Read Rectangular Text Data. R package version 1.3.1. https://CRAN.R-project.org/package=readr.

  45. Wickham, H., François, R., Henry, L., Müller, K. (2018b). dplyr: A Grammar of Data Manipulation. R package version 0.7.8. https://CRAN.R-project.org/package=dpylr.

  46. Wimberley, R. C., & Morris, L. (2002). The regionalization of poverty: Assistance for the black belt south? Southern Rural Sociology, 18, 294–306.

    Google Scholar 

Download references

Acknowledgements

This research was supported in part by the National Science Foundation (Awards # CMMI-1541136, # OPP-1745369, # SES-1823633, and # DGE-1806874), the National Aeronautics and Space Administration (Award # NNX15AP81G), the Eunice Kennedy Shriver National Institute of Child Health and Human Development (Award # P2C HD041025), the National Institute on Alcohol Abuse and Alcoholism (Award # U24 AA027684-01), and the Social Science Research Institute, Population Research Institute, and the Institutes for Energy and the Environment of the Pennsylvania State University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guangqing Chi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kamenetsky, M., Chi, G., Wang, D. et al. Spatial Regression Analysis of Poverty in R. Spat Demogr 7, 113–147 (2019). https://doi.org/10.1007/s40980-019-00048-0

Download citation

Keywords

  • Poverty
  • Exploratory spatial data analysis
  • Spatial regression
  • R