Spatial Demography

, Volume 4, Issue 3, pp 221–244

Latent Trajectory Modeling of Spatiotemporal Relationships Between Land Cover and Land Use, Socioeconomics, and Obesity in Ghana

  • Stephen E. S. Crook
  • Li An
  • John R. Weeks
  • Douglas A. Stow
Article

Abstract

Obesity is a growing public health concern in both developed and developing countries, creating acute challenges in places with scant resources. In Ghana, obesity rates have risen substantially in recent decades, a trend particularly noted in urban areas. However, high levels of migration and urbanization indicate a situation that is more complex than a simple urban/rural distinction may be able to explain. Latent trajectory modeling (LTM) with eigenvector spatial filtering offers a methodology to explore the spatial and temporal patterns of body mass index (BMI) change by going beyond the urban/rural distinction and examining how different environmental, social, and demographic variables contribute to BMI changes over time. Using data from a regional LULC study and the Ghana Demographic Health Survey (1993, 1998, 2003, 2008), the relationship between BMI and the amounts of urban, agricultural, and natural land covers, household size, % of houses with electricity, % houses with flush toilets, and % of houses with no toilets for 845 survey clusters is explored. Our findings suggest higher BMIs in the most urban areas, yet larger BMI increases in peri-urban areas (and lower BMI changes in slums and increasingly rural areas). The LTM modeling indicates a trajectory of BMI growth in the study region, yet one that is slowing over time. Earlier, indicators of higher socioeconomic status and larger households are associated with high BMIs, but these indicators are not associated with rising BMI over the entire study period. Areas with increases in urban land cover show consistent, significant relationships with BMI growth.

Keywords

Obesity Spatial modeling Eigenvector spatial filtering Latent trajectory model Ghana The urban transition 

References

  1. Abubakari, A. R., Lauder, W., Agyemang, C., Jones, M., Kirk, A., & Bhopal, R. S. (2008). Prevalence and time trends in obesity among adult West African populations: A meta-analysis. Obesity Reviews, 9, 297–311. doi:10.1111/j.1467-789X.2007.00462.x.CrossRefGoogle Scholar
  2. Amoah, A. G. B. (2003). Obesity in adult residents of Accra, Ghana. Ethnicity and Disease, 13, S97–101.Google Scholar
  3. An, L., Tsou, M., Crook, S. E., Spitzberg, B., & Gawron, M. (2015). Space-time analysis: Concepts, quantitative methods, and future directions. Annals of the Association of American Geographers, 105, 891–914.CrossRefGoogle Scholar
  4. An, L., Tsou, M.-H, Spitzberg, B. H, Gupta, D. K., & Gawron, J. M. (2016). Latent trajectory models for space-time analysis: An application in deciphering spatial panel data. Geographical Analysis. doi:10.1111/gean.12097.
  5. Asfaw, A. (2006). The effects of obesity on doctor-diagnosed chronic diseases in Africa: Empirical results from Senegal and South Africa. Journal of Public Health Policy, 27, 250–264. doi:10.1057/palgrave.jphp.3200089.CrossRefGoogle Scholar
  6. Benkeser, R. M., Biritwum, R., & Hill, A. G. (2012). Prevalence of overweight and obesity and perception of healthy and desirable body size in urban, Ghanaian women. Ghana Medical Journal, 46, 66–75.Google Scholar
  7. Biritwum, R., Gyapong, J., & Mensah, G. (2005). The epidemiology of obesity in Ghana. Ghana Medical Journal, 39(3), 82–85.Google Scholar
  8. Bollen, K. A., & Curran, P. J. (2006). Latent curve models: A structural equation perspective. New York City: Wiley.Google Scholar
  9. Chun, Y., & Griffith, D. A. (2011). Modeling network autocorrelation in space-time migration flows data: An eigenvectors spatial filtering approach. Annals of the Association of American Geographers, 101, 523–536.CrossRefGoogle Scholar
  10. Dake, F. A. A. (2013). Obesity among Ghanaian women: Past prevalence, future incidence. Public Health, 127, 590–592. doi:10.1016/j.puhe.2013.02.012.CrossRefGoogle Scholar
  11. Dake, F. A., Tawiah, E. O., & Badasu, D. M. (2011). Sociodemographic correlates of obesity among Ghanaian women. Public Health Nutrition, 14, 1285–1291. doi:10.1017/S1368980010002879.CrossRefGoogle Scholar
  12. Dennis, R. (2000). Rural transport and accessiblity. Geneva: International Labour Office.Google Scholar
  13. DHS Program. (2015). Demographic health survey STATCompiler [WWW document]. http://www.statcompiler.com/. Accessed May 12 2015.
  14. Duda, R. B., Darko, R., Seffah, J., Adanu, R. M., Anarfi, J. K., & Hill, A. G. (2008). Prevalence of obesity in women of Accra, Ghana. African Journal of Health Sciences, 14, 154–159.CrossRefGoogle Scholar
  15. Flegal, K. M., Carroll, M. D., Kuczmarski, R. J., & Johnson, C. L. (1998). Overweight and obesity in the United States: prevalence and trends, 1960–1994. International Journal of Obesity & Related Metabolic Disorders, 22, 39–47.CrossRefGoogle Scholar
  16. Frank, L. D., Andresen, M. A., & Schmid, T. L. (2004). Obesity relationships with community design, physical activity, and time spent in cars. American Journal of Preventive Medicine, 27, 87–96.CrossRefGoogle Scholar
  17. Garrett, J. L. (2005). Beyond rural urban: Keeping up with changing realities. Washington: International Food Policy Research Institute (IFPRI).Google Scholar
  18. Getis, A. (1995). Spatial filtering in a regression framework: Experiments on regional inequality, government expenditures, and urban crime. In R. Florax & L. Anselin (Eds.), New directions in spatial econometrics (pp. 172–185). Berlin: Springer.CrossRefGoogle Scholar
  19. Getis, A., & Griffith, D. A. (2002). Comparative spatial filtering in regression analysis. Geographical Analysis, 34, 130–140.CrossRefGoogle Scholar
  20. Ghana Statistical Service. (2012). Population and housing census - Summary report of final results. Accra: Ghana Statistical Service.Google Scholar
  21. Griffith, D. A. (2000). A linear regression solution to the spatial autocorrelation problem. Journal of Geographical Systems, 2, 141–156.CrossRefGoogle Scholar
  22. Guo, G., & Hipp, J. (2004). Longitudinal analysis for continuous outcomes: Random effects models and latent trajectory models. Handbook of data analysis (pp. 347–368). Thousand Oaks, CA: Sage.Google Scholar
  23. Houweling, T. A., Kunst, A. E., & Mackenbach, J. P. (2003). Measuring health inequality among children in developing countries: Does the choice of the indicator of economic status matter? International Journal for Equity in Health, 2, 8.CrossRefGoogle Scholar
  24. Jianchu, X., Fox, J., Vogler, J. B., Yongshou, Z. P. F., Lixin, Y., Jie, Q., & Leisz, S. (2005). Land-use and land-cover change and farmer vulnerability in Xishuangbanna Prefecture in Southwestern China. Environmental Management, 36, 404–413. doi:10.1007/s00267-003-0289-6.CrossRefGoogle Scholar
  25. Kawachi, I., & Subramanian, S. V. (2007). Neighbourhood influences on health. Journal of Epidemiology and Community Health, 61, 3–4.CrossRefGoogle Scholar
  26. Kennedy, G., Nantel, G., & Shetty, P. (2006). The double burden of malnutrition: Case studies from six developing countries. Rome: Nutrition Planning, Assessment and Evaluation Service, Food and Agriculture Organization of the United Nations. http://www.fao.org/docrep/009/a0442e/a0442e00.HTM.
  27. Krivoruchko, K. (2012). Empirical Bayesian Kriging: Implemented in ArcGIS geostatistical analyst. Redlands: ESRI.Google Scholar
  28. Kwan, M.-P. (2013). Beyond space (as we knew it): Toward temporally integrated geographies of segregation, health, and accessibility: Space-time integration in geography and giscience. Annals of the Association of American Geographers, 103, 1078–1086.CrossRefGoogle Scholar
  29. Lo, C. P., & Quattrochi, D. A. (2003). Land-use and land-cover change, urban heat island phenomenon, and health implications, photogramm. Photogrammetric Engineering & Remote Sensing, 69, 1053–1063.CrossRefGoogle Scholar
  30. McGregor, D., & Simon, D. (2012). The peri-urban interface: Approaches to sustainable natural and human resource use. Abingdon: Routledge.Google Scholar
  31. McLellan, F. (2002). Obesity rising to alarming levels around the world. The Lancet, 359, 1412.CrossRefGoogle Scholar
  32. Neuman, M., Kawachi, I., Gortmaker, S., & Subramanian, S. V. (2013). Urban-rural differences in BMI in low- and middle-income countries: the role of socioeconomic status. American Journal of Clinical Nutrition,. doi:10.3945/ajcn.112.045997.Google Scholar
  33. Ogden, C. L., Carroll, M. D., Curtin, L. R., McDowell, M. A., Tabak, C. J., & Flegal, K. M. (2006). Prevalence of overweight and obesity in the United States, 1999-2004. JAMA, 295, 1549–1555.CrossRefGoogle Scholar
  34. Ord, J. K., & Getis, A. (2001). Testing for local spatial autocorrelation in the presence of global autocorrelation. J. Reg. Sci., 41, 411–432.CrossRefGoogle Scholar
  35. Petit, C., Scudder, T., & Lambin, E. (2001). Quantifying processes of land-cover change by remote sensing: Resettlement and rapid land-cover changes in south-eastern Zambia. International Journal of Remote Sensing, 22, 3435–3456. doi:10.1080/01431160010006881.CrossRefGoogle Scholar
  36. Popkin, B. M. (1993). Nutritional patterns and transitions. Population and Development Review, 19, 138–157.CrossRefGoogle Scholar
  37. Popkin, B. M. (2002). The dynamics of the dietary transition in the developing world. In The nutrition transition: Diet and disease in the developing world (pp. 111–128). Academic press.Google Scholar
  38. Popkin, B. M. (2009). The world is fat: The fads, trends, policies, and products that are fattening the human race. London: Penguin.Google Scholar
  39. Popkin, B. M., & Gordon-Larsen, P. (2004). The nutrition transition: Worldwide obesity dynamics and their determinants. International Journal of Obesity, 28, S2–S9.CrossRefGoogle Scholar
  40. Preacher, K. J., Wichman, A. L., MacCallum, R. C., & Briggs, N. E. (2008). Latent growth curve modeling. Quantitative applications in the social sciences. Thousand Oaks, CA: Sage Publications Inc.CrossRefGoogle Scholar
  41. Prentice, A. M. (2006). The emerging epidemic of obesity in developing countries. International Journal of Epidemiology, 35, 93–99. doi:10.1093/ije/dyi272.CrossRefGoogle Scholar
  42. Rognerud, M. A., & Zahl, P.-H. (2006). Social inequalities in mortality: Changes in the relative importance of income, education and household size over a 27-year period. The European Journal of Public Health, 16, 62–68. doi:10.1093/eurpub/cki070.CrossRefGoogle Scholar
  43. Saarloos, D., Kim, J.-E., & Timmermans, H. (2009). The built environment and health: Introducing individual space-time behavior. International Journal of Environmental Research and Public Health, 6, 1724–1743. doi:10.3390/ijerph6061724.CrossRefGoogle Scholar
  44. Stevens, G. A., Singh, G. M., Lu, Y., Danaei, G., Lin, J. K., Finucane, M. M., et al. (2012). National, regional, and global trends in adult overweight and obesity prevalences. Popul Health Metr, 10, 22.CrossRefGoogle Scholar
  45. Tiefelsdorf, M., & Griffith, D. A. (2007). Semiparametric filtering of spatial autocorrelation: The eigenvector approach. Environment and Planning A, 39, 1193–1221.CrossRefGoogle Scholar
  46. Unger, A., & Riley, L. W. (2007). Slum health: From understanding to action. PLoS Med, 4, e295.CrossRefGoogle Scholar
  47. USAID. (2014). Spatial interpolation with demographic and health survey data: Key considerations (No. 9), DHS Spatial Analysis. USAID.Google Scholar
  48. Weeks, J. R. (2010). Defining urban areas. Remote sensing of Urban and Suburban areas (pp. 33–45). New York: Springer.CrossRefGoogle Scholar
  49. Weeks, J. R., Getis, A., Hill, A. G., Gadalla, M. S., & Rashed, T. (2004). The fertility transition in Egypt: Intraurban patterns in Cairo. Annals of the Association of American Geographers, 94, 74–93.CrossRefGoogle Scholar
  50. Weeks, J. R., Getis, A., Stow, D. A., Hill, A. G., Rain, D., Engstrom, R., et al. (2012). Connecting the dots between health, poverty and place in Accra, Ghana. Annals of the Association of American Geographers, 102, 932–941.CrossRefGoogle Scholar
  51. Weeks, J. R., Hill, A. G., & Stoler, J. (2013). Introduction to the Accra School: An overview of health, poverty, and place in Accra. Spatial Inequalities (pp. 3–23). New York: Springer.CrossRefGoogle Scholar
  52. World Health Organization. (2004). Obesity and overweight. Fact Sheet. [WWW document]. WHO. http://www.who.int/mediacentre/factsheets/fs311/en/. Accessed September 4 2015.
  53. World Health Organization. (2015). Global health observatory data repository: Overweight/obesity [WWW document]. http://apps.who.int/gho/data/node.main.A900?lang=en. Accessed May 12 2015.
  54. Yadav, K., & Krishnan, A. (2008). Changing patterns of diet, physical activity and obesity among urban, rural and slum populations in north India. Obesity Reviews, 9, 400–408. doi:10.1111/j.1467-789X.2008.00505.x.CrossRefGoogle Scholar
  55. Yang, T.-C., & Matthews, S. A. (2015). Death by segregation: Does the dimension of racial segregation matter? PLoS One, 10, e0138489.CrossRefGoogle Scholar
  56. Ziraba, A. K., Fotso, J. C., & Ochako, R. (2009). Overweight and obesity in urban Africa: A problem of the rich or the poor? BMC Public Health, 9, 465. doi:10.1186/1471-2458-9-465.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Stephen E. S. Crook
    • 1
  • Li An
    • 1
  • John R. Weeks
    • 1
  • Douglas A. Stow
    • 1
  1. 1.Department of GeographySan Diego State UniversitySan DiegoUSA

Personalised recommendations