Abstract
We evaluate the impacts of random spatial displacements on analyses that involve distance measures from displaced Demographic and Health Survey clusters to nearest ancillary point or line features, such as health resources or roads. We use simulation and case studies to address the effects of this introduced error, and propose use of regression calibration (RC) to reduce its impact. Results suggest that RC outperforms analyses involving naive distance-based covariate assignments by reducing the bias and MSE of the main estimator in most settings. Proposed guidelines also address the effect of the spatial density of destination features on observed bias.
This is a preview of subscription content, access via your institution.





References
Armstrong, M. P., Rushton, G., & Zimmerman, D. L. (1999). Geographically masking health data to preserve confidentiality. Statistics in medicine, 18(5), 497–525.
Bonner, M. R., Han, D., Nie, J., Rogerson, P., Vena, J. E., & Freudenheim, J. L. (2003). Positional accuracy of geocoded addresses in epidemiologic research. Epidemiology, 14(4), 408–412.
Burgert, C.R., Colston, J., Roy, T., & Zachary, B. (2013). Geographic displacement procedure and georeferenced data release policy for the Demographic and Health Surveys. DHS Spatial Analysis Report No. 7. Calverton, Maryland, USA: ICF International.
Burra, T., Jerrett, M., Burnett, R. T., & Anderson, M. (2002). Conceptual and practical issues in the detection of local disease clusters: A study of mortality in hamilton, ontario. The Canadian Geographer/Le Géographe Canadien, 46(2), 160–171.
Byass, P., Worku, A., Emmelin, A., & Berhane, Y. (2007). Dss and dhs: Longitudinal and cross-sectional viewpoints on child and adolescent mortality in ethiopia. Population Health Metrics, 5(1), 12.
Carroll, R. J., Ruppert, D., Stefanski, L. A., & Crainiceanu, C. M. (2010). Measurement error in nonlinear models: A modern perspective. Boca Raton, FL: CRC Press.
Carroll, R. J., & Stefanski, L. A. (1990). Approximate quasi-likelihood estimation in models with surrogate predictors. Journal of the American Statistical Association, 85, 652–663.
Cayo, M. R., & Talbot, T. O. (2003). Positional error in automated geocoding of residential addresses. International Journal of Health Geographics, 2(1), 10.
DeLuca, P., & Kanaroglou, P. (2008). Effects of alternative point pattern geocoding procedures on first and second order statistical measures. Journal of Spatial Science, 53(1), 131–141.
Feldacker, C., Emch, M., & Ennett, S. (2010). The who and where of HIV in rural Malawi: Exploring the effects of person and place on individual HIV status. Health & Place, 16, 996–1006.
Goldberg, D. W., Wilson, J. P., & Knoblock, C. A. (2007). From text to geographic coordinates: The current state of geocoding. Urisa Journal, 19(1), 33–46.
Hardin, J. W., Schmiediche, H., & Carroll, R. J. (2003). The regression-calibration method for fitting generalized linear models with additive measurement error. The Stata Journal, 3, 361–372.
Jacquez, G. M., & Rommel, R. (2009). Local indicators of geocoding accuracy (LIGA): Theory and application. International Journal of Health Geographics, 8, 60.
Kalemli-Ozcan, S., & Turan, B. (2011). Hiv and fertility revisited. Journal of Development Economics, 96(1), 61–65.
Kamel Boulos, M. N., Cai, Q., Padget, J. A., & Rushton, G. (2006). Using software agents to preserve individual health data confidentiality in micro-scale geographical analyses. Journal of Biomedical Informatics, 39(2), 160–170.
Kravets, N., & Hadden, W. C. (2007). The accuracy of address coding and the effects of coding errors. Health & Place, 13(1), 293–298.
Leitner, M., & Curtis, A. (2004). Cartographic guidelines for geographically masking the locations of confidential point data. Cartographic Perspectives, 49, 22–39.
Leitner, M., & Curtis, A. (2006). A first step towards a framework for presenting the location of confidential point data on mapsresults of an empirical perceptual study. International Journal of Geographical Information Science, 20(7), 813–822.
Lohela, T. J., Campbell, O. M., & Gabrysch, S. (2012). Distance to care, facility delivery and early neonatal mortality in malawi and zambia. PloS ONE, 7(12), e52110.
Mazumdar, S., Rushton, G., Smith, B. J., Zimmerman, D. L., & Donham, K. J. (2008). Geocoding accuracy and the recovery of relationships between environmental exposures and health. International Journal of Health Geographics, 7, 13.
Mekonnen, W., & Worku, A. (2011). Determinants of fertility in rural ethiopia: The case of butajira demographic surveillance system (dss). BMC Public Health, 11(1), 782.
Nhacolo, A. Q., Nhalungo, D. A., Sacoor, C. N., Aponte, J. J., Thompson, R., & Alonso, P. (2006). Levels and trends of demographic indices in southern rural mozambique: Evidence from demographic surveillance in manhica district. BMC Public Health, 6(1), 291.
Olson, K. L., Grannis, S. J., & Mandl, K. D. (2006). Privacy protection versus cluster detection in spatial epidemiology. Journal Information, 96(11), 2002–2008.
Core Team, R. (2012). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Rushton, G., Armstrong, M. P., Gittler, J., Greene, B. R., Pavlik, C. E., West, M. M., et al. (2006). Geocoding in cancer research: A review. American Journal of Preventive Medicine, 30(2), S16–S24.
Uganda Bureau of Statistics (UBOS) and ICF International (2012). Uganda Demographic and Health Survey 2011 [Datasets]. UGIR60FL and UGGE61FL Kampala, Uganda: UBOS and Calverton, Maryland: ICF International [Producers]. ICF International [Distributor].
Ward, M. H., Nuckols, J. R., Giglierano, J., Bonner, M. R., Wolter, C., Airola, M., et al. (2005). Positional accuracy of two methods of geocoding. Epidemiology, 16(4), 542–547.
Whitsel, E. A., Quibrera, P. M., Smith, R. L., Catellier, D. J., Liao, D., Henley, A. C., et al. (2006). Accuracy of commercial geocoding: Assessment and implications. Epidemiologic Perspectives & Innovations, 3(1), 8.
Wieland, S. C., Cassa, C. A., Mandl, K. D., & Berger, B. (2008). Revealing the spatial distribution of a disease while preserving privacy. Proceedings of the National Academy of Sciences, 105(46), 17608–17613.
World Health Organization (WHO) (2009). Uganda health facilities.
Zandbergen, P. A. (2007). Influence of geocoding quality on environmental exposure assessment of children living near high traffic roads. BMC Public Health, 7(1), 37.
Zandbergen, P. A. (2008). A comparison of address point, parcel and street geocoding techniques. Computers, Environment and Urban Systems, 32(3), 214–232.
Zandbergen, P. A. (2011). Influence of street reference data on geocoding quality. Geocarto International, 26(1), 35–47.
Zandbergen, P. A., & Hart, T. C. (2009). Geocoding accuracy considerations in determining residency restrictions for sex offenders. Criminal Justice Policy Review, 20(1), 62–90.
Zandbergen, P. A., Ignizio, D. A., & Lenzer, K. E. (2011). Positional accuracy of tiger 2000 and 2009 road networks. Transactions in GIS, 15(4), 495–519.
Zhan, F. B., Brender, J. D., De Lima, I., Suarez, L., & Langlois, P. H. (2006). Match rate and positional accuracy of two geocoding methods for epidemiologic research. Annals of Epidemiology, 16(11), 842–849.
Zimmerman, D. L., Fang, X., Mazumdar, S., & Rushton, G. (2007). Modeling the probability distribution of positional errors incurred by residential address geocoding. International Journal of Health Geographics, 6, 1.
Zimmerman, D. L., Li, J., & Fang, X. (2010). Spatial autocorrelation among automated geocoding errors and its effects on testing for disease clustering. Statistics in Medicine, 29(9), 1025–1036.
Zinszer, K., Jauvin, C., Verma, A., Bedard, L., Allard, R., Schwartzman, K., et al. (2010). Residential address errors in public health surveillance data: A description and analysis of the impact on geocoding. Spatial and Spatio-temporal Epidemiology, 1(2), 163–168.
Acknowledgments
This research was supported in part by grants from the National Institute of Environmental Health Sciences (T32ES007018, P30ES010126) and the United States Agency for International Development (USAID) through the MEASURE DHS project (Contract No. GPO-C-00-08-00008-00).
Confilct of interests
The authors declare that they have no competing interests.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
40980_2015_14_MOESM1_ESM.pdf
Appendix A Appendix A is a .pdf file which shows that the random displacement of DHS cluster locations leads to a classical measurement error problem when a distance-based covariate is used.(PDF 84KB)
40980_2015_14_MOESM2_ESM.txt
Appendix B Appendix B is a .txt file which provides R code to randomly displace DHS survey cluster locations based on the DHS Program geographic displacement procedure.(TXT 8KB)
Rights and permissions
About this article
Cite this article
Warren, J.L., Perez-Heydrich, C., Burgert, C.R. et al. Influence of Demographic and Health Survey Point Displacements on Distance-Based Analyses. Spat Demogr 4, 155–173 (2016). https://doi.org/10.1007/s40980-015-0014-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40980-015-0014-0
Keywords
- Global Position System
- Mean Square Error
- Global Position System Data
- True Distance
- Random Displacement