Skip to main content

Influence of Demographic and Health Survey Point Displacements on Raster-Based Analyses

Abstract

With this paper we explore the sensitivity of study results to spatial displacements associated with Demographic and Health Survey (DHS) data in research that integrates ancillary raster data. Through simulation studies, we found that the impact of DHS point displacements on raster-based analyses can be moderated through the generation of covariates representing average values from neighborhood buffers. Additionally, raster surface characteristics (i.e., spatial smoothness) were found to affect the extent of bias introduced through point displacements. Although simple point extraction produced unbiased estimates in analyses involving smooth continuous surfaces, it is not recommended in analyses that involve categorical raster surfaces.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Balk, D., Pullum, T., Storeygard, A., Greenwell, F., & Neuman, M. (2004). A spatial analysis of childhood mortality in West Africa. Population, Space and Place, 10, 175–216.

    Article  Google Scholar 

  • Baschieri, A. (2007). Effects of modernisation on desired fertility in Egypt. Population, Space and Place, 13, 353–376.

    Article  Google Scholar 

  • Bivand, R. (2013). spdep: Spatial dependence—weighting schemes, statistics and models. R package version 0.5-61.

  • Burgert, C. R., Colston, J., Roy, T., & Zachary, B. (2013). Geographic displacement procedure and georeferenced data release policy for the Demographic and Health Surveys. DHS Spatial Analysis Report No. 7. Calverton, Maryland, USA: ICF International.

  • De Castro, M. C., & Fisher, M. (2012). Is malaria illness among young children a cause or a consequence of low socioeconomic status? Evidence from the United Republic of Tanzania. Malaria Journal, 11, 161.

    Article  Google Scholar 

  • ESRI (2011). Arcgis desktop: Release 10.

  • Feldacker, C., Emch, M., & Ennett, S. (2010). The who and where of HIV in rural Malawi: Exploring the effects of person and place on individual HIV status. Health & Place, 16, 996–1006.

    Article  Google Scholar 

  • Gething, P. W., Patil, A. P., Smith, D. L., Guerra, C. A., Elyazar, I. R., Johnston, G. L., et al. (2011). A new world malaria map: Plasmodium falciparum endemicity in 2010. Malaria Journal, 10, 378.

    Article  Google Scholar 

  • Hengl, T., Heuvelink, G. B. M., & Van Loon, E. E. (2010). On the uncertainty of stream networks derived from elevation data: The error propagation approach. Hydrology and Earth System Sciences, 14, 1153–1165.

    Article  Google Scholar 

  • Heuvelink, G., Burrough, P., & Stein, A. (1989). Propagation of errors in spatial modelling with GIS. International Journal of Geographical Information Systems, 3, 303–322.

    Article  Google Scholar 

  • Heuvelink, G. B., Burrough, P. A., & Stein, A. (2007). Developments in analysis of spatial uncer-tainty since, Classics from IJGIS: Twenty years of the international journal of geographical science and systems. London: Taylor and Francis.

    Google Scholar 

  • Jankowska, M. M., Lopez-Carr, D., Funk, C., Husak, G. J., & Chafe, Z. A. (2012). Climate change and human health: Spatial modeling of water availability, malnutrition, and livelihoods in Mali, Africa. Applied Geography, 33, 4.

    Article  Google Scholar 

  • Kwan, M. (2012). The uncertain geographic context problem. Annals of the Association of American Geographers, 102, 958–968.

    Article  Google Scholar 

  • Mcgarigal, K., Cushman, S. A., Neel, M. C., & Ene, E. (2002). Fragstats: Spatial pattern analysis program for categorical maps.

  • McGarigal, K., Tagil, S., & Cushman, S. A. (2009). Surface metrics: An alternative to patch metrics for the quantification of landscape structure. Landscape Ecology, 24, 433–450.

    Article  Google Scholar 

  • Messina, J. P., Emch, M., Muwonga, J., Mwandagalirwa, K., Edidi, S. B., & Mama, N. (2010). Spatial and socio-behavioral patterns of HIV prevalence in the Democratic Republic of Congo. Social Science and Medicine, 71, 1428–1435.

    Article  Google Scholar 

  • Messina, J. P., Taylor, S. M., Meshnick, S. R., Linke, A. M., Tshefu, A. K., & Atua, B. (2011). Population, behavioural and environmental drivers of malaria prevalence in the Democratic Republic of Congo. Malaria Journal, 10, 161.

    Article  Google Scholar 

  • Simler, K. R. (2006). Nutrition mapping in Tanzania: An exploratory analysis (204th ed.). Washington, D.C.: International Food Policy Research Institute (IFPRI).

    Google Scholar 

  • Ward, M. H., Nuckols, J. R., Giglierano, J., Bonner, M. R., Wolter, C., Airola, M., & Hartge, P. (2005). Positional accuracy of two methods of geocoding. Epidemiology, 16, 542–547.

    Article  Google Scholar 

  • Whitsel, E. A., Quibrera, P. M., Smith, R. L., Catellier, D. J., Liao, D., Henley, A. C., & Heiss, G. (2006). Accuracy of commercial geocoding: Assessment and implications. Epidemiologic Perspectives & Innovations, 3(1), 8.

    Article  Google Scholar 

  • Zandbergen, P. A. (2007). Influence of geocoding quality on environmental exposure assessment of children living near high traffic roads. BMC Public Health, 7, 37.

    Article  Google Scholar 

  • Zandbergen, P. A., & Green, J. W. (2007). Error and bias in determining exposure potential of children at school locations using proximity-based GIS techniques. Environmental Health Perspectives, 115, 1363.

    Article  Google Scholar 

  • Zandbergen, P. A., Hart, T. C., Lenzer, K. E., & Camponovo, M. E. (2012). Error propagation models to examine the effects of geocoding quality on spatial analysis of individual-level datasets. Spatial and spatio-temporal epidemiology, 3, 69–82.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by grants from the National Institute of Environmental Health Sciences (T32ES007018, P30ES010126) and the United States Agency for International Develop-ment (USAID) through the MEASURE DHS project (Contract No. GPO-C-00-08-00008-00).

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Perez-Heydrich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

40980_2015_13_MOESM1_ESM.txt

Appendix A: Appendix A corresponds to a.txt file containing the R code used to simulate the point displacement procedure. (TXT 7 kb)

40980_2015_13_MOESM2_ESM.txt

Appendix B: In order to determine the level of smoothness, i.e., spatial autocorrelation coefficient, of an ancillary raster dataset, investigators can run the following R function, which calls the raster dataset as its sole argument. (TXT 1 kb)

40980_2015_13_MOESM3_ESM.txt

Appendix C: Appendix C is an R function that returns a vector of misclassification probabilities for all locations, and an estimate of the resulting misclassification rate of a given categorical raster surface. (TXT 1 kb)

40980_2015_13_MOESM4_ESM.pdf

Appendix D: Appendix D contains figures of all categorical raster surfaces that were used in simulation studies, and the relationship between estimated bias and misclassification rate of simulated surfaces. (PDF 357 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perez-Heydrich, C., Warren, J.L., Burgert, C.R. et al. Influence of Demographic and Health Survey Point Displacements on Raster-Based Analyses. Spat Demogr 4, 135–153 (2016). https://doi.org/10.1007/s40980-015-0013-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40980-015-0013-1

Keywords

  • Locational error
  • Spatial analysis
  • Covariate misclassification