Skip to main content
Log in

Occurrence and toxicity of cyanobacterium Microcystis aeruginosa in freshwater ecosystems of the Indian subcontinent: a review

  • Review Paper
  • Published:
Energy, Ecology and Environment Aims and scope Submit manuscript

Abstract

Microcystis aeruginosa is a common freshwater cyanobacterium inflicting a potentially detrimental effect on aquatic and terrestrial life forms due to their bloom formation and production of hepatotoxin called Microcystin. Although several cases of human and animal poisoning associated with Microcystis aeruginosa bloom have been reported worldwide, there are only a few studies or bloom reports, particularly in Indian aquatic systems. Frequent occurrences of such toxic Microcystis blooms are a threat to water quality as well as the health of humans and animals. Increased cultural eutrophication and varying climatic conditions have intensified the incidents of Microcystis blooms in different waterbodies, most of which remain undocumented. The complexity of the ecology of bloom formers and variables affecting bloom formation and toxin production limits the complete understanding of microalgal blooms. The potential environmental and health risks caused by Microcystis blooms and their toxins make them an ecologically and economically important species. Hence, a holistic understanding of the effects of Microcystis blooms, dynamics, and their toxicity is inevitable. Therefore, this review recapitulates the toxic freshwater cyanobacteria Microcystis, briefly emphasising the occurrence of Microcystis bloom reports along the Indian waters, factors catalysing the bloom formation and its related toxicity studies. This review further provides an overview of the life cycle of Microcystis species, the toxic effects of Microcystin and its mode of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The manuscript has no associated data.

Code availability

Not applicable.

References

  • Agrawal MK, Ghosh SK, Bagchi D, Weckesser J, Erhard M, Bagchi SN (2006) Occurrence of microcystin-containing toxic water blooms in Central India. J Microbiol Biotechnol 16(2):212–218

    Google Scholar 

  • Anahas AMP, Gayathri M, Muralitharan G (2013) Isolation and characterization of microcystin-producing Microcystis aeruginosa MBDU 626 from a freshwater bloom sample in Tamil Nadu, South India, In: microbiological research in agroecosystem management, Springer, India. pp 235–248. https://doi.org/10.1007/978-81-322-1087-0_16

  • Baker PD, Fabbro LD (2002) A guide to the identification of common blue-green algae (Cyanoprokaryotes) in Australian freshwaters. Identification guide no. 25. Canberra, Cooperative research centre for freshwater ecology

  • Carmichael WW (1992) Cyanobacteria secondary metabolites-the cyanotoxins. J Appl Bacteriol 72:445–459. https://doi.org/10.1111/j.1365-2672.1992.tb01858.x

    Article  Google Scholar 

  • Carmichael WW, Beasley VR, Bunner DL, Eloff JN, Falconer I, Gorham P, Harada KI, Krishnamurthy T, Yu MJ, Moore RE, Rinehart K, Runnegar M, Skulberg OM, Watanabe M (1988) Naming of cyclic heptapeptide toxins of cyanobacteria (blue-green algae). Toxicon 26:971–973. https://doi.org/10.1016/0041-0101(88)90195-x

    Article  Google Scholar 

  • Carpenter SR (2005) Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proc Natl Acad Sci 102(29):10002–10005. https://doi.org/10.1073/pnas.0503959102

    Article  Google Scholar 

  • Chaffin JD, Davis TW, Smith DJ, Baer MM, Dick GJ (2018) Interactions between nitrogen form, loading rate, and light intensity on Microcystis and Planktothrix growth and microcystin production. Harmful Algae 73:84–97. https://doi.org/10.1016/j.hal.2018.02.001

    Article  Google Scholar 

  • Chorus I, Bartram J (1999) Toxic Cyanobacteria in Water: A Guide to their Public Health Consequences, Monitoring and Management (1st ed.). CRC Press. https://doi.org/10.1201/9781482295061

  • Chorus I, Welker M (2021) Toxic cyanobacteria in water: A Guide to their Public Health Consequences, Monitoring and Management, 2nd edn. CRC Press. https://doi.org/10.1201/9781003081449

  • Davis TW, Harke M, Marcoval MA, Goleski JA, Orano-Dawson C, Berry DL, Gobler CJ (2010) Effects of nitrogenous compounds and phosphorus on the growth of toxic and non-toxic strains of Microcystis during cyanobacterial blooms. Aquat Microb Ecol 61:149–162. https://doi.org/10.3354/ame01445

    Article  Google Scholar 

  • Demoulin CF, Lara YJ, Cornet L, François C, Baurain D, Wilmotte A, Javaux EJ (2019) Cyanobacteria evolution: insight from the fossil record. Free Radic Biol Med 140:206–223. https://doi.org/10.1016/j.freeradbiomed.2019.05.007

    Article  Google Scholar 

  • Desikachary TV (1959) Cyanophyta, Indian council of agricultural research. New Delhi, pp 81–99

  • Elayaraj B, Selvaraju M (2015) Occurrence of Microcystis aeruginosa Kütz water blooms in a eutrophic pond of Chidambaram taluk. Int Lett Nat Sci 47:11–15

    Google Scholar 

  • Facey JA, Apte SC, Mitrovic SM (2019) A review of the effect of trace metals on freshwater cyanobacterial growth and toxin production. Toxins 11(11):643. https://doi.org/10.3390/toxins11110643

    Article  Google Scholar 

  • Fan GD, Lin Q, Chen L (2014) The effect of ultrasound on Microcystis sp. morphological characteristics at different ultrasonic power. Nat Environ Pollut Technol 13(1):43–48

    Google Scholar 

  • Ghosh SK, Das PK, Bagchi SN (2008) PCR-based detection of microcystin-producing cyanobacterial blooms from Central India. Indian J Exp Biol 46(1):66–70

    Google Scholar 

  • Grabow WOK, Randit WCDu, Prozesky OW, Scott WR (1982) Microcystis aeruginosa toxin: cell culture toxicity, hemolysis, and mutagenicity assays. Appl Environ Microbiol 43(6):1425–1433

    Article  Google Scholar 

  • Gumbo JR, Cloete TE (2011) The mechanism of Microcystis aeruginosa death upon exposure to Bacillus mycoides. Phys Chem Earth, Parts a/b/c 36(14–15):881–886

    Article  Google Scholar 

  • Gupta P (2019) Occurrence of genus Microcystis lemmerm from water bodies of Maldah district, West Bengal, India. J Soc Trop Plant Res 6(2):233–240

    Article  Google Scholar 

  • Harke MJ, Davis TW, Watson SB, Gobler CJ (2016) Nutrient-controlled niche differentiation of western lake Erie cyanobacterial populations revealed via metatranscriptomic surveys. Environ Sci Technol 50(2):604–615. https://doi.org/10.1021/acs.est.5b03931

    Article  Google Scholar 

  • Jacoby JM, Collier D, Welch EB, Hardy FJ, Crayton M (2000) Environmental factors associated with a toxic bloom of Microcystis aeruginosa. Can J Fish Aquat Sci 57:231–240. https://doi.org/10.1139/f99-234

    Article  Google Scholar 

  • Janse I, Kardinaal WEA, Meima M, Fastner J, Visser PM, Zwart G (2004) Toxic and non-toxic Microcystis colonies in natural populations can be differentiated on the basis of rRNA gene internal transcribed spacer diversity. Appl Environ Microbiol 70(7):3979–3987. https://doi.org/10.1128/AEM.70.7.3979-3987.2004

    Article  Google Scholar 

  • Kaneko T, Nakajima N, Okamoto S, Suzuki I, Tanabe Y, Tamaoki M, Nakamura Y, Kasai F, Watanabe A, Kawashima K, Kishida Y, Ono A, Shimizu Y, Takahashi C, Minami C, Fujishiro T, Kohara M, Katoh M, Nakazaki N, Nakayama S, Yamada M, Tabata S, Watanabe MM (2008) Complete genomic structure of the bloom-forming toxic cyanobacterium Microcystis aeruginosa NIES-843. DNA Res 14(6):247–256. https://doi.org/10.1093/dnares/dsm026

    Article  Google Scholar 

  • Kardinaal WEA, Janse I, Kamst-van Agterveld M, Meima M, Snoek J, Mur LR, Huisman J, Zwart G, Visser PM (2007) Microcystis genotype succession in relation to microcystin concentrations in freshwater lakes. Aquat Microb Ecol 48(1):1–12. https://doi.org/10.3354/ame048001

    Article  Google Scholar 

  • Kumar B, Sinha A (2014) Microcystis toxic blooms in fish culture ponds and their biological and chemical control. Int J Sci Technol Res 3(3):398–410

    Google Scholar 

  • Lawton LA, Robertson PKJ, Cornish BJP, Jaspars M (1999) Detoxification of microcystins (cyanobacteria hepatotoxins) using TiO2 photocatalytic oxidation. Environ Sci Technol 33:771–775. https://doi.org/10.1021/es9806682

    Article  Google Scholar 

  • Lehman PW, Kurobe T, Lesmeister S, Baxa D, Tung A, Teh SJ (2017) Impacts of the 2014 severe drought on the Microcystis bloom in San Francisco Estuary. Harmful Algae 63:94–108. https://doi.org/10.1016/j.hal.2017.01.011

    Article  Google Scholar 

  • Lei L, Li C, Peng L, Han BP (2015) Competition between toxic and non-toxic Microcystis aeruginosa and its ecological implication. Ecotoxicology 24(7–8):1411–1418. https://doi.org/10.1007/s10646-015-1456-2

    Article  Google Scholar 

  • Madhumathi V, Vijayakumar S (2013) Survey of cyanobacterial flora from Samuthiram lake of Thanjavur, Tamil Nadu, India. J Algal Biomass Utilization 4(1):70–79

    Google Scholar 

  • Malbrouck C, Kestemont P (2006) Effects of microcystins on fish. Environ Toxicol Chem: Int J 25(1):72–86

    Article  Google Scholar 

  • Massey IY, Zhang X, Yang F (2018) Importance of bacterial biodegradation and detoxification processes of microcystins for environmental health. J Toxicol Environ Health, Part B 21(6–8):357–369. https://doi.org/10.1080/10937404.2018.1532701

    Article  Google Scholar 

  • Mc Lellan NL, Manderville RA (2017) Toxic mechanisms of microcystins in mammals. Toxicol Res 6(4):391–405

    Article  Google Scholar 

  • Michalak AM, Anderson EJ, Beletsky D, Boland S, Bosch NS, Bridgeman TB, Chaffin JD, Cho K, Confesor R, Daloglu I, Depinto JV, Evans MA, Fahnenstiel GL, He L, Ho JC, Jenkins L, Johengen TH, Kuo KC, Laporte E, Liu X, McWilliams MR, Moore MR, Posselt DJ, Richards RP, Scavia D, Steiner AL, Verhamme E, Wright DM, Zagorski MA (2013) Record-setting algal bloom in lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proc Natl Acad Sci 110(16):6448–6452. https://doi.org/10.1073/pnas.1216006110

    Article  Google Scholar 

  • Miller MA, Kudela RM, Mekebri A, Crane D, Oates SC, Tinker MT, Staedler M, Miller WA, Toy-Choutka S, Dominik C, Hardin D, Langlois G, Murray M, Ward K, Jessup DA (2010) Evidence for a novel marine harmful algal bloom: cyanotoxin (Microcystin) transfer from land to sea otters. PLoS ONE 5(9):e12576. https://doi.org/10.1371/journal.pone.0012576

    Article  Google Scholar 

  • Mohan R, Sathish T, Padmakumar KB (2020) Occurrence of potentially toxic cyanobacteria Microcystis aeruginosa in aquatic ecosystems of Central Kerala (South India). Ann De Limnol-Int J Limnol 56:1–10. https://doi.org/10.1051/limn/2020015

    Article  Google Scholar 

  • Muhetaer G, Asaeda T, Jayasanka SM, Baniya MB, Abeynayaka HD, Rashid MH, Yan H (2020) Effects of light intensity and exposure period on the growth and stress responses of two cyanobacteria species: Pseudanabaena galeata and Microcystis aeruginosa. Water 12(2):407. https://doi.org/10.3390/w12020407

    Article  Google Scholar 

  • O’Neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334. https://doi.org/10.1016/j.hal.2011.10.027

    Article  Google Scholar 

  • Oishi S, Watanabe MF (1986) Acute toxicity of Microcystis aeruginosa and its cardiovascular effects. Environ Res 40(2):518–524. https://doi.org/10.1016/s0013-9351(86)80126-8

    Article  Google Scholar 

  • Otsuka S, Suda S, Li R, Matsumoto S, Watanabe MM (2000) Morphological variability of colonies of Microcystis morphospecies in culture. J Gen Appl Microbiol 46(1):39–50. https://doi.org/10.2323/jgam.46.39

    Article  Google Scholar 

  • Padmakumar KB, Sanilkumar MG, Saramma AV, Sajeevan VN, Menon NR (2008) Microcystis aeruginosa bloom on Southwest coast of India. Harmful Algae News 37:11–12

    Google Scholar 

  • Padmavathi P, Prasad MD (2017) Studies on algal bloom disasters in carp culture ponds. J Morphol Sci 24(2):32–43

    Google Scholar 

  • Padmavathi P, Veeraiah K (2009) Studies on the influence of Microcystis aeruginosa on the ecology and fish production of carp culture ponds. Afr J Biotech 8(9):1911–1918. https://doi.org/10.5897/AJB2009.000-9266

    Article  Google Scholar 

  • Paerl HW, Huisman J (2009) Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiol Rep 1:27–37. https://doi.org/10.1111/j.1758-2229.2008.00004.x

    Article  Google Scholar 

  • Palaniswami R, Manoharan S, Mohan A (2015) Characterisation of tropical reservoirs in Tamil Nadu, India in terms of plankton assemblage using multivariate analysis. Indian J Fish 62(3):1–13

    Google Scholar 

  • Percival SL, Williams DW (2014) Cyanobacteria. In: Microbiology of waterborne diseases, 2nd edn. Academic press, pp 79–88. https://doi.org/10.1016/B978-0-12-415846-7.00005-6

  • Pilotto L, Hobson P, Burch MD, Ranmuthugala G, Attewell R, Weightman W (2004) Acute skin irritant effects of cyanobacteria (blue-green algae) in healthy volunteers. Aust N Z J Public Health 28(3):220–224. https://doi.org/10.1111/j.1467-842x.2004.tb00699.x

    Article  Google Scholar 

  • Pouria S, de Andrade A, Barbosa J, Cavalcanti RL, Barreto VT, Ward CJ, Preiser W, Poon GK, Neild GH, Codd GA (1998) Fatal microcystin intoxication in haemodialysis unit in Caruaru. Braz Lancet 352(9121):21–26. https://doi.org/10.1016/s0140-6736(97)12285-1

    Article  Google Scholar 

  • Prakash S, Lawton LA, Edwards C (2009) Stability of toxigenic Microcystis blooms. Harmful Algae 8(3):377–384. https://doi.org/10.1016/j.hal.2008.08.014

    Article  Google Scholar 

  • Prasath B, Nandakumar R, Jayalakshmi T, Santhanam P (2014) First report on the intense cyanobacteria Microcystis aeruginosa Kützing, 1846 bloom at Muttukkadu backwater, Southeast coast of India. Indian J Geo-Mar Sci 43(2):258–262

    Google Scholar 

  • Rajkonwar J, Bora A, Dwivedi SK (2019) Detection of toxigenic cyanobacteria in freshwater bodies of North East India. Curr Sci 117(4):549

    Google Scholar 

  • Ramachandra TV, Asulabha KS, Sincy V, Vinay S, Bhat SP, Aithal BH (2015) Sankey lake: waiting for an immediate sensible action. Bengaluru: Indian institute of science

  • Rao PVL, Bhattacharya R, Gupta SD (1994) Isolation, culture, and toxicity of the cyanobacterium (blue-green alga) Microcystis aeruginosa from a freshwater source in India. Bull Environ Contam Toxicol 52(6):878–885. https://doi.org/10.1007/BF00200697

    Article  Google Scholar 

  • Rastogi RP, Madamwar D, Incharoensakdi A (2015) Bloom dynamics of cyanobacteria and their toxins: environmental health impacts and mitigation strategies. Front Microbiol 6:1254. https://doi.org/10.3389/fmicb.2015.01254

    Article  Google Scholar 

  • Ray JG, Santhakumaran P, Kookal S (2020) Phytoplankton communities of eutrophic freshwater bodies (Kerala, India) in relation to the physicochemical water quality parameters. Environ Dev Sustain 23:259–290. https://doi.org/10.1007/s10668-019-00579-y

    Article  Google Scholar 

  • Reynolds C (1973) Growth and buoyancy of Microcystis aeruginosa Kütz. emend. Elenkin in a shallow eutrophic lake. Proc R Soc Lond B Biol Sci 184:29–50. https://doi.org/10.1098/rspb.1973.0029

    Article  Google Scholar 

  • Reynolds CS, Rogers DA (1976) Seasonal variations in the vertical distribution and buoyancy of Microcystis aeruginosa Kütz. Emend elenkin in rostherne mere. Hydrobiologia 48:17–23

    Article  Google Scholar 

  • Reynolds CS, Jaworski GHM, Cmiech HA, Leedale GF (1981) On the annual cycle of the blue-green algae Microcystis aeruginosa Kütz. Emend. Elenkin. Philos Trans R Soc Lond B, Biol Sci 293(1068):419–477. https://doi.org/10.1098/rstb.1981.0081

    Article  Google Scholar 

  • Sanad SM, Al-Gamaal MA, Hemmaid DK (2015) Histopathological changes in the liver of the Nile fish Oreochromis niloticus fed on the blue-green algae Microcystis aeruginosa under laboratory conditions. In: International conference on biological, civil and environmental engineering (BCEE-2015), Bali (Indonesia)

  • Sangolkar LN, Maske SS, Muthal PL, Kashyap SM, Chakrabarti T (2009) Isolation and characterization of microcystin producing Microcystis from a Central Indian water bloom. Harmful Algae 8(5):674–684. https://doi.org/10.1016/j.hal.2008.12.003

    Article  Google Scholar 

  • Santhoshkumar C, Ashok PV, Sampathkumar P, Anantharaman P (2010) Occurrence of algal bloom Microcystis aeruginosa in the Vellar estuary, South-East coast of India. Int J Curr Res 5:52–55

    Google Scholar 

  • Sember SC (2002) The effect of nutrient levels and ratios on the growth of Microcystis aeruginosa and microcystin production. Magister scientiae, Thesis, University of Port Elizabeth, South Africa

  • Sivonen K, Niemelä SI, Niemi RM, Lepistö L, Luoma TH, Räsänen LA (1990) Toxic cyanobacteria (blue-green algae) in Finnish fresh and coastal waters. Hydrobiologia 190(3):267–275. https://doi.org/10.1007/BF00008195

    Article  Google Scholar 

  • Srivastava A, Choi GG, Ahn CY, Oh HM, Ravi AK, Asthana RK (2012) Dynamics of microcystin production and quantification of potentially toxigenic Microcystis sp. using real-time PCR. Water Res 46(3):817–827. https://doi.org/10.1016/j.watres.2011.11.056

    Article  Google Scholar 

  • Tanabe Y, Hodoki Y, Sano T, Tada K, Watanabe MM (2018) Adaptation of the freshwater bloom-forming cyanobacterium Microcystis aeruginosa to Brackish water is driven by recent horizontal transfer of sucrose genes. Front Microbiol 9:1150. https://doi.org/10.3389/fmicb.2018.01150

    Article  Google Scholar 

  • Tillett D, Dittmann E, Erhard M, Von Döhren H, Börner T, Neilan BA (2000) Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide–polyketide synthetase system. Chem Biol 7(10):753–764. https://doi.org/10.1016/s1074-5521(00)00021-1

    Article  Google Scholar 

  • Tillett D, Parker DL, Neilan BA (2001) Detection of toxigenicity by a probe for the microcystin synthetase A gene (mcyA) of the cyanobacterial genus Microcystis: comparison of toxicities with 16S rRNA and phycocyanin operon (phycocyanin intergenic spacer) phylogenies. Appl Environ Microbiol 67(6):2810–2818. https://doi.org/10.1128/AEM.67.6.2810-2818.2001

    Article  Google Scholar 

  • Tomioka N, Imai A, Komatsu K (2011) Effect of light availability on Microcystis aeruginosa blooms in shallow hypereutrophic lake Kasumigaura. J Plankton Res 33(8):1263–1273. https://doi.org/10.1093/plankt/fbr020

    Article  Google Scholar 

  • Tyagi MB, Singh DP, Kumar A, Jha PN, Sinha RP, Kumar A (2006) Hepatotoxicity of Microcystis aeruginosa strains growing as blooms in certain eutrophic ponds. EXCLI J 5:66–78

    Google Scholar 

  • Ueno Y, Nagata S, Tsutsumi T, Hasegawa A, Watanabe MF, Park HD, Chen GC, Chen G, Yu SZ (1996) Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay. Carcinogenesis 17(6):1317–1321. https://doi.org/10.1093/carcin/17.6.1317

    Article  Google Scholar 

  • Vasudevan S, Arulmoorthy MP, Gnanamoorthy P, Ashokprabu V, Srinivasan M (2015) Continuous blooming of harmful microalgae Microcystis aeruginosa Kütz, 1846 in Muttukadu estuary, Tamil Nadu, Southeast coast of India. Int J Sci Invent Today 4(1):15–23

    Google Scholar 

  • Vijayan D, Manivannan K, Santhoshkumar S, Pandiaraj D, MohamedImran M, Thajuddin N et al (2014) Depiction of microalgal diversity in Gundur lake, Tiruchirappalli District, Tamil Nadu, South India. Asian J Biol Sci 7(3):111–121

    Article  Google Scholar 

  • Wang Y, Chen F (2008) Decomposition and phosphorus release from four different size fractions of Microcystis spp. taken from lake Taihu, China. J Environ Sci 20(7):891896

    Article  Google Scholar 

  • Wang M, Shi W (2011) Satellite-observed algae blooms in China’s lake Taihu. EOS Trans Am Geophys Union 89(22):201–202. https://doi.org/10.1029/2008EO220001

    Article  Google Scholar 

  • Watanabe M (1996) Isolation, cultivation, and classification of bloom-forming Microcystis in Japan. In: Toxic Microcystis, Watanabe MF, Harada K, Carmichael WW, Fujiki H (eds) Boca Raton: CRC Press, pp 13–34

  • Wei K, Amano Y, Machida M (2021) The effect of pH and light on the colony formation and Buoyancy of Microcystis aeruginosa UTEX-2061. Water Air Soil Pollut 232:113

    Article  Google Scholar 

  • Whitton BA, Potts M (2012) Introduction to the cyanobacteria. Ecology of cyanobacteria II: their diversity in space and time. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3855-3_1

  • World Health Organization (WHO) (2020) Cyanobacterial toxins: microcystins (No. WHO/HEP/ECH/WSH/2020.6). World Health Organization

  • Xiao M, Li M, Reynolds CS (2018) Colony formation in the cyanobacterium Microcystis. Biol Rev 93(3):1399–1420. https://doi.org/10.1111/brv.12401

    Article  Google Scholar 

  • Yamamoto Y, Shiah FK (2010) Variation in the growth of Microcystis aeruginosa depending on colony size and position in colonies. Ann De Limnol-Int J Limnol 46:47–52. https://doi.org/10.1051/limn/2010006

    Article  Google Scholar 

  • Yu T, Xie P, Dai M, Liang G (2009) Determinations of MC-LR and [Dha 7] MC-LR concentrations and physicochemical properties by liquid chromatography-tandem mass spectrometry. Bull Environ Contam Toxicol 83(5):757. https://doi.org/10.1007/s00128-009-9805-6

    Article  Google Scholar 

  • Zepernick BN, Gann ER, Martin RM, Pound HL, Krausfeldt LE, Chaffin JD, Wilhelm SW (2021) Elevated pH conditions associated with Microcystis spp. blooms decrease viability of the cultured diatom Fragilaria crotonensis and natural diatoms in lake Erie. Front Microbiol 12:598736. https://doi.org/10.3389/fmicb.2021.598736

    Article  Google Scholar 

  • Zhang S, Liu C, Li Y, Imam MU, Huang H, Liu H, Xin Y, Zhang H (2016) Novel role of ER stress and autophagy in microcystin-LR induced apoptosis in Chinese hamster ovary cells. Front Physiol 7:527. https://doi.org/10.3389/fphys.2016.00527

    Article  Google Scholar 

  • Zhang M, Yang Z, Yu Y, Shi (2020) Interannual and seasonal shift between Microcystis and Dolichospermum: A 7 year investigation in lake Chaohu. China Water 12(7):1978. https://doi.org/10.3390/w12071978

    Article  Google Scholar 

  • Zhu W, Wan L, Zhao L (2010) Effect of nutrient level on phytoplankton community structure in different water bodies. J Environ Sci 22:32–39. https://doi.org/10.1016/S1001-0742(09)60071-1

    Article  Google Scholar 

Download references

Acknowledgements

The first author is thankful to the Cochin University of Science and Technology, Kochi, Kerala, India, for the award of Junior Research Fellowship (U-JRF). This investigation was carried out as a part of the Seed Money for New Research Initiatives (SMNRI) programme under the State Plan Grant (2021-22) of Cochin University of Science and Technology (CUSAT), Kerala, India.

Funding

Cochin University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

RM wrote the manuscript with input from AMA and LCT. RM and AMA performed the literature search and data analysis. KBP supervised this review and provided research materials. All authors read and approved the manuscript.

Corresponding author

Correspondence to K. B. Padmakumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

No animal testing was performed during this study.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, R., Anjaly, M.A., Thomas, L.C. et al. Occurrence and toxicity of cyanobacterium Microcystis aeruginosa in freshwater ecosystems of the Indian subcontinent: a review. Energ. Ecol. Environ. 8, 332–343 (2023). https://doi.org/10.1007/s40974-023-00277-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40974-023-00277-6

Keywords

Navigation