Abstract
Fly ash (FA) is a solid waste generated from coal combustion processes every year from thermal power plant. FA was considered as a problem for the environment, but also proves to be beneficial for the agricultural crops. This review begins with the utilization of FA as a soil ameliorant, its role in enhancing the plant growth and impact of elemental uptake from FA on plant growth. FA improves the physical, chemical and biological property of the soil which thereby enhances the crop productivity. Then, it focusses on phytotoxicity of various heavy metals in plants such as chromium, arsenic, lead, zinc, etc., followed by analyzing the defense mechanism of the plants against these heavy metal stresses which is due to the presence of toxic heavy metals present in FA resulting in the generation of reactive oxygen species which further causes oxidative stress. Finally, the review analyzes the influence of heavy metals on the antioxidative system of various plant species which helps in understanding the usage of optimum concentration of FA amendment in the soil for plant cultivation and to further explore the key features regulating the heavy metal damage and utilization of FA in agriculture.
This is a preview of subscription content,
to check access.



References
Abhilash PC, Tripathi V, Edrisi SA et al (2016) Sustainability of crop production from polluted lands. Energy Ecol Environ 1:54–65. https://doi.org/10.1007/s40974-016-0007-x
Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142. https://doi.org/10.1016/j.geoderma.2004.01.003
Aggarwal M, Sharma S, Kaur N, Pathania D, Bhandhari K, Kaushal N, Kaur R, Singh K, Srivastava A, Nayyar H (2011) Exogenous proline application reduces phytotoxic effects of selenium by minimizing oxidative stress and improves growth in bean (Phaseolus vulgaris L.) seedlings. Biol Trace Elem Res 140(3):354–367. https://doi.org/10.1007/s12011-010-8699-9
Aggrawal B, Czymmek KJ, Sparks DL, Bais HP (2013) Transient influx of nickel in root mitochondria modulates organic acid and reactive oxygen species production in nickel hyperaccumulators Alyssum murale. J Biol Chem 288(10):7351–7362. https://doi.org/10.1074/jbc.M112.406645
Ahmad R, Tehsin Z, Malik ST (2016) Phytoremediation potential of hemp (Cannabis sativa L.): identification and characterization of heavy metals responsive genes. Clean-Soil Air Water. 44(2):195–201. https://doi.org/10.1002/clen.201500117
Ansari FA, Gupta AK, Yunus M (2011) Fly ash from coal fed thermal power plants: bulk utilization in horticulture—a long term risk management option. Int J Environ Res 5(1):101–108. https://doi.org/10.22059/IJER.2010.295
Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006
Bakkaus E, Gouget B, Gallien JP, Khodja H, Carrot H, Morel JL, Collins R (2005) Concentration and distribution of cobalt in higher plants: the use of micro-PIXE spectroscopy. Nucl Instrum Methods B 231:350–356
Barceloux DG, Barceloux D (1999) Cobalt. J Toxicol Clin Toxicol 37:201–216. https://doi.org/10.1081/CLT-100102420
Basu M, Pande M, Bhadoria PBS, Mahapatra SC (2009) Potential fly-ash utilization in agriculture: a global review. Progre Nat Sci 19:1173–1186. https://doi.org/10.1016/j.pnsc.2008.12.006
Belen Marquez-Garcıa M, Fernandez-Recamales A, Cordoba F (2012) Effects of cadmium on phenolic composition and antioxidant activities of Erica andevalensis. J Bot. https://doi.org/10.1155/2012/936950
Benekos K, Kissoudis C, Nianiou-Obeidat I, Labrou N, Madesis P, Kalamaki M, Makris A, Tsaftaris A (2010) Overexpression of a specific soybean GmGSTU4 isoenzyme improves diphenyl ether and chloroacetanilide herbicide tolerance of transgenic tobacco plants. J Biotechnol 150:195–201. https://doi.org/10.1016/j.jbiotec.2010.07.011
Brake SS, Jensen RR, Mattox JM (2004) Effects of coal fly ash amended soils on trace element uptake in plants. Environ Geol 45:680–689. https://doi.org/10.1007/s00254-003-0921-z
CEA (Central Electricity Authority) (2018) Annual Report on Fly-ash utilization, Report on Fly Ash Generation at Coal/Lignite Based Thermal Power Stations and its Utilization in the Country, New Delhi
Cestone B, Cuypers A, Vangronsveld J, Sgherri C, Navari-Izzo F (2012) The influence of EDDS on the metabolic and transcriptional responses induced by copper in hydroponically grown Brassica carinata seedlings. Plant Physiol Biochem 55:43–51. https://doi.org/10.1016/j.plaphy.2012.03.011
Chandrakar JD, Dash AK, Jena SN, Panda N, Monica M (2015) Soil microbial activity as influenced by application of fly ash and soil amendments to maize crop in acidic alfisols. Int Res J Agric Sci Soil Sci 5(4):120–128. https://doi.org/10.14303/irjas.2015.067
Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109:69–74. https://doi.org/10.1016/S0269-7491(99)00238-9
Chinmayee MD, Anu MS, Mahesh B, Sheeba MA, Mini I, Swapna TS (2014) A comparative study of heavy metal accumulation and antioxidant responses in Jatropha curcas L. IOSR. J Environ Sci Toxicol Food Technol 8(7):58–67
Ciupa MK, Ciepał R, Socha AN, Barczyk G (2013) A comparative study of heavy metal accumulation and antioxidant responses in Vaccinium myrtillus L. leaves in polluted and non-polluted areas. Environ Sci Pollut Res Int 20(7):4920–4932. https://doi.org/10.1007/s11356-012-1461-4
Ciupa MK, Ciepał R, Socha AN, Barczyk G (2016) Accumulation of heavy metals and antioxidant responses in Pinus sylvestris L. needles in polluted and non-polluted sites. Ecotoxicology 25:970–981. https://doi.org/10.1007/s10646-016-1654-6
Cohu CM, Pilon M (2007) Regulation of superoxide dismutase expression by copper availability. Physiol Plant 129(4):747–755. https://doi.org/10.1111/j.1399-3054.2007.00879
Cuypers A, Smeets K, Ruytinx J, Opdenakker K, Keunen E, Remans T, Horemans N, Vanhoudt N, Van Sanden S, Van Belleghem F, Yvese G, Jana C, Jacoa V (2011) The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J Plant Physiol 168:309–316. https://doi.org/10.1016/j.jplph.2010.07.010
Dahiya P, Manglik A (2013) Evaluation of antibacterial, antifungal and antioxidant potential of essential oil from Amyris balsamifera against multi drug resistant clinical isolates. Asian J Pharm Clin Res 6(5):57–60
Dalvi AA, Bhalerao SA (2013) Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Ann Plant Sci 2(9):362–368
Demirevska-kepova K, Simova-Stoilova L, Stoyanova Z, Holzer R, Feller U (2004) Biochemical changes in barley plants after successive supply of copper and manganese. Environ Exp Bot 52:253–266. https://doi.org/10.1016/j.envexpbot.2004.02.004
De-Vries W, Lofts S, Tipping E, Meili M, Groenenberg JE, Schütze G (2002) Impact of soil properties on critical concentrations of cadmium, lead, copper, zinc, and mercury in soil and soil solution in view of ecotoxicological effects. Rev Environ Contam Toxicol 191:47–89. https://doi.org/10.1007/978-0-387-69163-3_3
Dimkpa CHO, Merten D, Svatos A, Buchel G, Kothe E (2009) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41(1):154–162. https://doi.org/10.1016/j.soilbio.2008.10.010
Dwivedi S, Tripathi RD, Srivastava S, Mishra S, Shukla MK, Tiwari KK, Singh R, Rai UN (2007) Growth performance and biochemical responses of three rice (Oryza sativa L.) cultivars grown in fly-ash amendment soil. Chemosphere 67:140–151. https://doi.org/10.1016/j.chemosphere.2006.09.012
Farmer EE, Mueller MJ (2013) ROS-mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol 64:429–450. https://doi.org/10.1146/annurev-arplant-050312-120132
Freeman JL, Garcia D, Ki D, Hopf A, Salt DE (2005) Constitutively elevated salicyclic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol 137(3):1082–1091. https://doi.org/10.1104/pp.104.055293
Freeman JL, Tamaoki M, Stushnoff C (2010) Molecular mechanisms of selenium tolerance and hyper accumulation in Stanleya pinnata. Plant Physiol 153(4):1630–1652. https://doi.org/10.1104/pp.110.156570
Gajewska E, Sklodowska M, Slaba M, Mazur J (2006) Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots. Biol Plant 50:653–659. https://doi.org/10.1007/s10535-006-0102-5
Gajic G et al (2018) Ecological potential of plants for phytoremediation and ecorestoration of fly ash deposits and mine wastes. Front Environ Sci 6:124
Gangolff WJ, Ghodrati M, Sims JT, Vasilas BL (2010) Impact of fly ash amendments and incorporation method of hydraulic properties of sandy soil. Water Air Soil Pollut 119(1–4):231–245. https://doi.org/10.1023/A:1005150807037
Gautam S, Singh A, Singh J, Shikha (2012) Effect of fly ash amended soil on growth and yield of Indian Mustard (Brassica juncea). Adv Biores 3(4):39–45
Georgiadou EC, Kowalska E, Patla K, Kulbat K, Smolinska B, Leszczynska J, Fotopoulos V (2018) Influence of heavy metals (Ni, Cu, and Zn) on nitro-oxidative stress responses, proteome regulation and allergen production in Basil (Ocimum basilicum L.) plants. Front. Plant Sci. 9(862):1–16. https://doi.org/10.3389/fpls.2018.00862
Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930. https://doi.org/10.1016/j.plaphy.2010.08.016
Gjorgieva D, Kadifkova T, Tatjana R, Ruskovska T, BaIeva K, Stafilov T (2013) Influence of heavy metal stress on antioxidant status and DNA damage in Urtica dioica. Biomed Res Int. https://doi.org/10.1155/2013/276417
Gond DP, Pal A, Singh S (2011) Growth performance and biochemical responses of tomato (Lycopersicon esculentum Mill.) grown in fly ash amended soil. J Ecophysiol Occup Health 11:123–130. https://doi.org/10.18311/jeoh/2011/2257
Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal stressed plants a little easier. Funct Plant Biol 32:481–494
Gupta AK, Sinha S (2006) Role of Brassica juncea L. Czern. (var. vaibhav) in the phytoextraction of Ni from soil amended with fly-ash, selection of extractant for metal bioavailability. J Hazard Mater 136:371–378. https://doi.org/10.1016/j.jhazmat.2005.12.025
Gupta AK, Sinha S (2008) Decontamination and/or revegetation of fly ash dykes through naturally growing plants. J Hazard Mater 153:1078–1087
Gupta AK, Sinha S (2009) Growth and metal accumulation response of Vigna radiate L. var PDM 54 (mung bean) grown on fly ash- amended soil: effect on dietary intake. Environ Geochem Health 31:463–473. https://doi.org/10.1007/s10653-008-9199-0
Gupta AK, Mishra RK, Sinha S, Lee BK (2010) Growth, metal accumulation and yield performance of Brassica campestris L. (cv. Pusa Jaikisan) grown on soil amended with tannery sludge/fly ash mixture. Ecol Eng 36(8):981–991. https://doi.org/10.1016/j.ecoleng.2010.04.003
Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11. https://doi.org/10.1093/jexbot/53.366.1
Hamid N, Bukhari N, Jawaid F (2010) Physiological responses of Phaseolus vulgaris in different lead concentration. Pak J Bot 42:239–246
Hassan Z, Aarts MGM (2011) Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants. Environ Exp Bot 72:53–63. https://doi.org/10.1016/j.envexpbot.2010.04.003
He J, Qin J, Long L, Ma Y, Li H, Li K, Jiang X, Liu T, Polle A, Liang Z (2011) Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus × canescens. Physiol Plant 143:50–63. https://doi.org/10.1111/j.1399-3054.2011.01487
Hechmi N, Ben Aissa N, Abdenaceur H, Jedidi N (2015) Uptake and bioaccumulation of pentachlorophenol by emergent wetland plant Phragmites australis (common reed) in cadmium co-contaminated soil. Int J Phytoremediation. 17:109–116. https://doi.org/10.1080/15226514.2013.851169
Henrique F, Rabêlo S, Borgo L (2016) Changes caused by heavy metals in micronutrient content and antioxidant system of forage grasses used for phytoremediation: an overview. Ciência Rural. 46(8):1368–1375. https://doi.org/10.1590/0103-8478cr20151291
Honghua H, Dong Z, Peng Q, Wang X, Fan C, Zhang X (2017) Impact of coal fly ash on plant growth and accumulation of essential nutrients and trace elements by alfalfa (Medicago sativa) grown in a losessial soil. J Environ Manag 197:428–439. https://doi.org/10.1016/j.jenvman.2017.04.028
Howladar MF, Islam MR (2016) A study on physico-chemical properties and uses of coal ash of Barapukuria coal fired thermal power plant, Dinajpur, for environmental sustainability. Energy Ecol Environ 1(4):233–247. https://doi.org/10.1007/s40974-016-0022-y
Islam MM, Hoque M, Okuma E, Banu MNA, Shimoishi Y, Nakamura Y, Murata Y (2009) Exogenous proline and glycine betaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. J Plant Physiol 166:1587–1597. https://doi.org/10.1016/j.jplph.2009.04.002
Jambhulkar HP, Shaikh SMS, Kumar S (2018) Fly ash toxicity, emerging issues and possible implications for its exploitation in agriculture; Indian scenario: a review. Chemosphere 213:333–344
Jiang W, Liu D (2010) Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Plant Biol 10:40. https://doi.org/10.1186/1471-2229-10-40
Jukny R, Vitkauskaite G, Racaite M, Vencloviene J (2012) The impacts of heavy metals on oxidative stress and growth of spring barley. Cent Eur J Biol 7(2):299–306. https://doi.org/10.2478/s11535-012-0012-9
Junaid M, Adnan M, Khan N, Khan N, Rahman M, Ali N (2013) Plant growth, biochemical, characteristics and heavy metals contents of Medicago sativa L., Brassica juncea (L.) Czern and Cicer arietinum. Fuuast J Biol 3(2):5–103
Kachout SS, Mansoura AB, Leclerc JC, Mechergui R, Rejeb MN, Ouerghi Z (2009) Effects of heavy metal on antioxidant activities of Atriplex hortensis and A. rosea. J. Food Agricul Environ. 7(4):938–945
Kafel A, Nadgorska-Socha A, Gospodarek J, Babczyńska A, Skowronek M, Kandziora M, Rozpedek K (2010) The effects of Aphis fabae infestation on the antioxidant response and heavy metal content in field grown Philadelphus coronarius plants. Sci Total Environ 408(5):1111–1119. https://doi.org/10.1016/j.scitotenv.2009.11.013
Karthik S, Kumar AE, Gowtham P, Elango G, Gokul D, Thangaraj S (2014) Soil stabilization by using fly ash. IOSR- J Mech Civ Eng 10(6):20–26. https://doi.org/10.9790/1684-1062026
Kim YH, Lee HS, Kwak SS (2010) Differential responses of sweet potato peroxidases to heavy metals. Chemosphere 81:79–85. https://doi.org/10.1016/j.chemosphere.2010.06.063
Kim S-H, Jung M-Y, Lee Y-M (2012) Effect of heavy metals on the antioxidant enzymes in the marine ciliate Euplotes crassus. Toxicol Environ Health Sci 3(4):213–219. https://doi.org/10.1007/s13530-011-0103-4
Kisa D (2018) The responses of antioxidant system against the heavy metal-induced stress in tomato. J Nat Appl Sci 22(1):1–6. https://doi.org/10.19113/sdufbed.52379
Kishor P, Ghosh AK, Kumar D (2010) Use of flyash in agriculture: a way to improve soil fertility and its productivity. Asian J Agric Res 4:1–14
Krzesłowska M, Lenartowska M, Mellerowicz EJ, Samardakiewicz S, Woźny A (2009) Pectinous cell wall thickenings formation—A response of moss protonemata cells to lead. Environ Exp Bot 65:119–131. https://doi.org/10.1016/j.envexpbot.2008.05.006
Krzesłowska M, Lenartowska M, Samardakiewicz S, Bilski WA (2010) Lead deposited in the cell wall of Funaria hygrometrica protonemata is not stable–a remobilization can occur. Environ Pollut 158:325–338. https://doi.org/10.1016/j.envpol.2009.06.035
Kukier U, Peters CA, Chaney RL, Angle JS, Roseberg RJ (2004) The effect of pH on metal accumulation in two Alyssum species. J Environ Qual 33:2090–2102
Kulbat K, Leszczyńska J (2016) Antioxidants as a defensive shield in thyme (Thymus vulgaris L.) grown on the soil contaminated with heavy metals. Biotechnol Food Sci. 80(2):109–117
Kumar A, Vajpayee P, Ali MB, Tripathi RD, Singh N, Rai UN, Singh SN (2002) Biochemical responses of Cassia siamea Lamk. grown on coal combustion residue (Fly-ash). Bull Environ Contam Toxicol 68:675–683. https://doi.org/10.1007/s00128-001-0307-4
Lee S, Moon JS, Domier LL, Korban SS (2002) Molecular characterization of phytochelatin synthase expression in transgenic Arabidopsis. Plant Physiol Biochem 40(9):727–733. https://doi.org/10.1016/S0981-9428(02)01430-4
Lewis S, Donkin ME, Depledge MH (2001) Hsp70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aquat Toxicol 51:277–291. https://doi.org/10.1016/S0166-445X(00)00119-3
Li HF, Gray C, Mico C, Zhao FJ, McGrath SP (2009) Phytotoxicity and bioavailability of cobalt to plants in a range of soils. Chemosphere 75:979–986. https://doi.org/10.1016/j.chemosphere.2008.12.068
Li N, Liu R, Chen J, Wang J, Hou L, Zhou Y (2020) Enhanced phytoremediation of PAHs and cadmium contaminated soils by a Mycobacterium. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.141198
Liang HM, Lin TH, Chiou JM, Yeh KC (2009) Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators. Environ Pollut 157(6):1945–1952. https://doi.org/10.1016/j.envpol.2008.11.052
Lin M, Ning XA, An T, Zhang J, Chen C, Ke Y, Liu J et al (2016) Degradation of polycyclic aromatic hydrocarbons (PAHs) in textile dyeing sludge with ultrasound and Fenton processes: effect of system parameters and synergistic effect study. J Hazard Mater 307:7–16
Lomonte C, Sgherri C, Baker AJM, Kolev SD, Navari-Izzo F (2010) Antioxidative response of Atriplex codonocarpa to mercury. Environ Exp Bot 69:9–16. https://doi.org/10.1016/j.envexpbot.2010.02.012
Majer BJ, Tscherko D, Paschke A (2002) Effects of heavy metal contamination of soils on micronucleus induction in Tradescantia and on microbial enzyme activities: a comparative investigation. Mutat Res 515(1–2):111–124. https://doi.org/10.1016/S1383-5718(02)00004-9
Malecka A, Piechalak A, Mensinger A, Hanć A, Barałkiewicz D, Tomaszewska B (2012) Antioxidative defense system in Pisum sativum roots exposed to heavy metals (Pb, Cu, Cd, Zn). Pol J Environ Stud 21(6):1721–1730
Manan FA, Mamat DD, Samad AA, Ong YS, Ooh KF, Chai TT (2015) Heavy metal accumulation and antioxidant properties of Nephrolepis biserrata growing in heavy metal-contaminated soil. Glob Nest J 17(1):1–11
Martins LL, Mourato MP, Cardoso AI, Pinto AP, Mota AM, Goncalves MLS, De Varennes A (2011) Oxidative stress induced by cadmium in Nicotiana tabacum L.: effects on growth parameters, oxidative damage and antioxidant responses in different plant parts. Acta Physiol Plant 33(4):1375–1383. https://doi.org/10.1007/s11738-010-0671-y
Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15(4):523–530
Mishra M, Sahu RK, Padhy RN (2007) Growth, yield and elemental status of rice (Oryza sativa) grown in fly ash amended soils. Ecotoxicology 16:271–278. https://doi.org/10.1007/s10646-006-0128-7
Mithofer A, Schulze B, Boland W (2004) Bio tic and heavy metal stress response in plants: evidence for common signals. FEBS Lett 566:1–5. https://doi.org/10.1016/j.febslet.2004.04.011
Mourato M, Reis R, Martins LL (2012) Characterization of plant antioxidative system in response to abiotic stresses: a focus on heavy metal toxicity. In: Montanaro G, Dichio B (eds) Advances in selected plant physiology aspects. InTech, Vienna, pp 23–44
Muthusaravanan S, Sivarajasekar N, Vivek JS, Paramasivan T, Naushad M, Prakashmaran J, Gayathri V, Al Duaij OK (2018) Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environ Chem Lett 16(4):1339–1359. https://doi.org/10.1007/s10311-018-0762-3
Nadgorska-Socha A, Kafel A, Kandziora-Ciupa M, Gospodarek J, Zawisza-Raszka A (2013) Accumulation of heavy metals and antioxidant responses in Vicia faba plants grown on non-metallic contaminated soil. Environ Sci Pollut Res 20:1124–1134. https://doi.org/10.1007/s11356-012-1191-7
Neves SB, Soares C, Sousa A, Martins V, Azenha M, Geros H, Fidalgo F (2017) An efficient antioxidant system and heavy metal exclusion from leaves make Solanum cheesmaniae more tolerant to Cu than its cultivated counterpart. Food Energy Security. 6(3):123–133. https://doi.org/10.1002/fes3.114
Panda D, Tikadar P (2014) Effect of fly ash incorporation in soil on germination and seedling characteristics of rice (Oryza sativa L.). Int Q J Biol Life Sci 2(3):800–807
Panda SK, Chaudhary I, Khan MH (2003) Heavy metals induce lipid peroxidation and affect antioxidants in wheat leaves. Biol Plant 2:289–294. https://doi.org/10.1023/A:1022871131698
Panda D, Mandal L, Barik J (2020) Phytoremediation potential of naturally growing weed plants grown on fly ash-amended soil for restoration of fly ash deposit. Int J Phytorem. https://doi.org/10.1080/15226514.2020.1754757
Pandey N, Pathak GC, Pandey DK, Pandey R (2009a) Heavy metals Co, Ni, Cu, Zn and Cd, produces oxidative damage and evoke differential antioxidant responses in Spinach. Braz J Plant Physiol 21(2):103–111. https://doi.org/10.1590/S1677-04202009000200003
Pandey VC, Abhilash PC, Upadhayay RN, Tewari DD (2009b) Application of fly ash on the growth performance and translocation of toxic heavy metals within Cajanus cajan L. Implication for safe utilization of fly ash for agricultural production. J Hazard Mater 166:255–259. https://doi.org/10.1016/j.jhazmat.2008.11.016
Pandey VC, Singh JS, Kumar Tiwari DD (2010) Accumulation of heavy metals by Chickpea grown in fly ash treated soil: effect on antioxidants. CLEAN Soil Air Water 38(12):1116–1123. https://doi.org/10.1002/clen.201000178
Pani NK, Samal P, Das R, Sahoo S (2015) Effect of fly ash on growth and yield of sunflower (Helianthus annus L.). Int. J. agro and Agricult. Res. 7(2):64–74
Pant PP, Tripathi AK (2014) Impact of heavy metals on morphological and biochemical parameters of Shorea robusta plant. Ekológia (Bratislava) 33(2):116–126. https://doi.org/10.2478/eko-2014-0012
Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349. https://doi.org/10.1016/j.ecoenv.2004.06.010
Parlak KU (2016) Effect of Nickel on growth and biochemical characteristics of wheat (Triticum sativum L.) seedlings. Wagening J Life Sci 76:1–5. https://doi.org/10.1016/j.njas.2012.07.001
Pascual JA, Garcia C, Hernandez T, Moreno JL, Ros M (2000) Soil microbial activity as a biomarker of degradation and remediation processes. Soil Biol Biochem 32:1877–1883. https://doi.org/10.1016/S0038-0717(00)00161-9
Pathan SM, Aylmore LAG, Colmer TD (2003) Soil properties and turf growth on a sandy soil amended with fly ash. Plant Soil 256(1):103–114. https://doi.org/10.1023/A:1026203113588
Pati SS, Sahu SK (2004) CO2 evaluation and enzyme activities (dehydrogenase, protease and amylase) of fly ash amended soil in presence and absence of earthworms (under laboratory condition). Geo Derma 118:289–301. https://doi.org/10.1016/S0016-7061(03)00213-1
Patra M, Bhowmik N, Bandopadhyay B, Sharma A (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Indian Acad Sci 3:199–223. https://doi.org/10.1016/j.envexpbot.2004.02.009
Plackova A, Geneva M, Markovska Y, Salamon I, Stancheva I (2010) Antioxidant potential of Marigold (Calendula officinalis Linn.) flowers grown in Slovakia and Bulgaria. Eur J Plant Sci Biotechnol 4(1):145–149
Pohanka M (2014a) Alzheimer’s disease and oxidative stress. A review. Curr Med Chem 21(3):356–364. https://doi.org/10.2174/09298673113206660258
Pohanka M (2014b) Copper, aluminum, iron and calcium inhibit human acetyl cholinesterase in vitro. Environ Toxicol Pharmacol 37(1):455–459. https://doi.org/10.1016/j.etap.2014.01.001
Pourrut B, Pohu AL, Pruvot C, Garcon G, Verdin A, Waterlot C, Bidar G, Shirali P, Douay F (2011) Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial Part 2. Influence on plants. Sci Total Environ 409:4504–4510. https://doi.org/10.1016/j.scitotenv.2011.07.047
Prabhakar J, Dendorkar N, Morchhale RK (2004) Influence of fly ash on strength behavior of typical soils. Constr Build Mater 18:263–267. https://doi.org/10.1016/j.conbuildmat.2003.11.003
Prasad SM, Dwivedi R, Zeeshan M (2005) Growth, photosynthetic electron transport, and antioxidant responses of young soybean seedlings to simultaneous exposure of nickel and UV-B stress. Photosynthetica 2:177–185. https://doi.org/10.1007/s11099-005-0031-0
Prasad SSD, Raju AVRG, Mallikarjuna K, Hephzibah G, Kumar NV (2016) Impact of thermal fly ash and cow dung on growth, yield and metal residues in Solanum melongena. Asian J Plant Sci Res 6(5):1–4
Rahman H, Sabreen S, Alam S, Kawai S (2005) Effects of nickel on growth and composition of metal micronutrients in barley plants grown in nutrient solution. J Plant Nutr 28:393–404. https://doi.org/10.1081/PLN-200049149
Rahmawati NUS, Sutopo NR, Yulia N, Eko H (2020) Phytotoxicity of coal fly ash on plant growth and heavy metal uptake by plant in an acid soil. J Degrad Min Land Manag 7(3):2233–2240. https://doi.org/10.15243/jdmil.2020.073.2233
Raj S, Mohan S (2016) Impact on proline content of Jatropha curcas in fly ash amended soil with respect to heavy metals. Int J Pharm Sci 8(5):244–247
Raj S, Mohan S (2018) Influence of metal uptake from fly ash on the growth of Jatropha curcas plant: bulk utilization approach. Int J Pharma Biosci 9(2):154–159. https://doi.org/10.22376/ijpbs.2018.9.2.b154-159
Raj S, Dahiya P, Mohan S (2015) Physico-chemical analysis and in vivo antibacterial activity of Jatropha curcas grown in fly ash amended soil. Int J Appl Environ Sci 10(4):1375–1383
Rao SN (2015) Effect of fly ash of on certain biochemical parameters of Coleus forskohlii. Int J Appl Pure Sci Agric 1(12):81–84
Rastgoo L, Alemzadeh A, Afsharifar A (2011) Isolation of two novel isoforms encoding zinc- and copper-transporting P1B-ATPase from Gouan (Aeluropus littoralis). Plant Omics J 4(7):377–383
Rautaray SK, Ghosh BC, Mittra BN (2003) Effect of fly ash, organic wastes and chemical fertilizers on yield, nutrient uptake, heavy metal content and residual fertility in a rice-mustard cropping sequence under acid lateritic soils. Bioresour Technol 90:275–283. https://doi.org/10.1016/S0960-8524(03)00132-9
Rawat K, Pathak B, Fulekar MH (2015) Enzymatic mechanism during phytoextraction of heavy metals from fly ash amended soil. Int J Sci Ind Res 6(4):1041–1055
Reddy AM, Kumar SG, Jyonthsnakumari G, Thimmanaik S, Sudhakar C (2005) Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 60:97–104. https://doi.org/10.1016/j.chemosphere.2004.11.092
Rees F, Germain C, Sterckean T, Morel JL (2015) Plant growth and metal uptake by a non-hyper accumulating species (Lolium perenne) and a Cd-Zn hyperaccumulator (Noceaea caerulescens) in contaminated soils amended with biochar. Plant Soil 395(1–2):57–73. https://doi.org/10.1007/s11104-015-2384-x
Ruan X, Luo F, Li D, Zhang J, Liu Z, Xu W, Huang G, Li X (2011) Cotton BCP genes encoding putative blue copper-binding proteins are functionally expressed in fiber development and involved in response to high-salinity and heavy metal stresses. Physiol Plant 141:71–83. https://doi.org/10.1111/j.1399-3054.2010.01420
Sampaio CJS, de Souza JRB, Damiao AO et al (2019) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) in a diesel oil-contaminated mangrove by plant growth- promoting rhizobacteria. 3 Biotech 9:155. https://doi.org/10.1007/s13205-019-1686-8
Sangwan P, Kumar V, Joshi U (2014) Effect of Chromium (VI) Toxicity on enzymes of nitrogen metabolism in cluster beans (Cyamopsis tetragonoloba L.). Enzyme Res 7:836–840. https://doi.org/10.1155/2014/784036
Sao S, Sahu PK (2013) Influence of fly ash and growth regulator with soil for determination of chlorophyll in Arachis hypogea L. Am J Plant Sci 4:1744–1749. https://doi.org/10.4236/ajps.2013.49214
Saraswat PK, Chaudhary K (2014) Effect of fly ash (FA) to improving soil quality and increase the efficiency of crop productivity. Eur J Biotechnol Biosci 2(6):72–78
Schutzendubel A, Polle A (2001) Plants response to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365. https://doi.org/10.1093/jexbot/53.372.1351
Shahid M, Dumat C, Pourrut B, Silvestre J, Laplanche C, Pinelli E (2013) Influence of EDTA and citric acid on lead-induced oxidative stress to Vicia faba roots. J Soils Sediments. https://doi.org/10.1007/s11368-013-0724-0
Shahid M, Dumat C, Pourrut B, Sabir M, Pinelli E (2014) Assessing the effect of metal speciation on lead toxicity to Vicia faba pigment contents. J Geochem Explor 144:290–297. https://doi.org/10.1016/j.gexplo.2014.01.003
Shakeel A, Khan AA, Hakeem KR (2020) Growth, biochemical, and antioxidant response of beetroot (Beta vulgaris L.) grown in fly ash-amended soil. SN Appl Sci 2:1378. https://doi.org/10.1007/s42452-020-3191-4
Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753. https://doi.org/10.1016/j.envint.2005.02.003
Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52. https://doi.org/10.1590/S1677-04202005000100004
Sharma SK, Kalra N, Singh GR (2002) Soil physical and chemical properties as influenced by fly ash addition in soil and yield of wheat. J Sci Ind Res 61(8):617–620
Sharma DC, Sharma CP, Tripathi RD (2003) Phytotoxic lesions of zinc in maize. Chemosphere 51:63–68
Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. https://doi.org/10.1155/2012/217037
Singh DK, Gupta T (2016) Effect through inhalation on human health of PM1 bound polycyclic aromatic hydrocarbons collected from foggy days in northern part of India. J Hazard Mater 306:257–268
Singh S, Prasad SM (2014) Growth, photosynthesis and oxidative responses of Solanum melongena L. seedlings to cadmium stress: mechanism of toxicity amelioration by kinetin. Sci Hortic 176:1–10
Singh M, Kumar J, Singh S, Singh VP, Prasad SM, Singh MPVVB (2015) Adaptation strategies of plants against heavy metal toxicity: a short review. Biochem Pharmacol 4(2):1–7. https://doi.org/10.4172/2167-0501.1000161
Sinha S, Gupta AK (2005) Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz: effect on antioxidants. Chemosphere 61(8):1204–1214. https://doi.org/10.1016/j.chemosphere.2005.02.063
Sinha D, Sharma S, Dwivedi MK (2013) The impact of fly ash on photosynthetic activity and medicinal property of plants. Int J Curr Microbiol Appl Sci 2(8):382–388
Smeets K, Ruytinx J, Semane B, Van Belleghem F, Remans T, Van Sanden S, Vangronsveld J, Cuypers A (2008) Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress. Environ Exp Bot 63:1–8. https://doi.org/10.1016/j.envexpbot.2007.10.028
Stankovic S, Kalaba P, Stankovic AR (2014) Biota as toxic metal indicators. Environ Chem Lett 12(1):63–84. https://doi.org/10.1007/s10311-013-0430-6
Swaminathan MS (2003) Biodiversity: an effective safety net against environmental pollution. Environ Pollut 126(3):287–291. https://doi.org/10.1016/S0269-7491(03)00241-0
Thakare PB, Chaudhary MD, Pokale WK (2014) Physico-chemical characterization of fly ash and its effect on the growth of soyabean plant (Glycine max). Int J Res Biosci Agric Technol 2(1):1262–1270
Tiwari S, Kumari B, Singh SN (2008) Evaluation of metal mobility/immobility in fly ash induced by bacterial strains isolated from the rhizospheric zone of Typha latifolia growing on fly ash dumps. Bioresour Technol 99:1305–1310
Vajpayee P, Tripathi RD, Rai UN, Ali MB, Singh SN (2000) Chromium accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nympaea alba L. Chemosphere 41:1075–1082. https://doi.org/10.1016/S0045-6535(99)00426-9
Van Bussel CGJ, Schroeder JP, Mahlmann L, Schulz C (2014) Aquatic accumulation of dietary metals (Fe, Zn, Cu Co, Mn) in recirculating aquaculture systems (RAS) changes body composition but not performance and health of juvenile turbot (Psetta maxima). Aquacult Eng 61:35–42. https://doi.org/10.1016/j.aquaeng.2014.05.003
Vanhoudt N, Vandenhove H, Horemans N, Remans T, Opdenakker K, Smeets K, Bello DM, Wannijn J, Van Hees M, Vangronsveld J (2011) Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part I: responses in the roots. J Environ Radioact 102:630–637. https://doi.org/10.1016/j.jenvrad.2011.03.015
Varshney A, Dahiya P, Singh N, Mohan S (2019) Variations in morphological parameters and pigment content of Calendula officinalis grown in fly ash amended soil. Plant Archives 19(2):2959–2963
Velickovic JM, Dimitrijevic DS, Mitic SS, Mitic MN (2014) The determination of phenolic composition, antioxidative activity and the heavy metals in the extracts of Calendula officinalis L. Adv Technol 3(2):46–51
Viehweger K (2014) How plants cope with heavy metals. Bot Stud 55(35):1–12. https://doi.org/10.1186/1999-3110-55-35
Vijayalakshmi VK, Revathi K, Sudha PN (2010) Comparative studies on the effect of antioxidant properties of the plants Helianthus annus and Solanum nigrum exposed to the heavy metal chromium. J Pharm Sci Res 2(12):889–895
Winquist E, Jorklof K, Schultz E, Rasanen M, Salonen K, Anasonye F, Cajthaml T, Steffen KT, Jorgensen KS, Tuomela M (2013) Bioremediation of PAH-contaminated soil with fungi- From laboratory to field scale. Int Biodeterior Biodegrad 86:238–247
Wojas S, Clemens S, Skodowska A, Antosiewicz DM (2010) Arsenic response of AtPCS1- and CePCS-expressing plants—effects of external As (V) concentration on As-accumulation pattern and NPT metabolism. J Plant Physiol 167:169–175. https://doi.org/10.1016/j.jplph.2009.07.017
Yadav SK (2010) Heavy metal toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr J Bot 76:167–179. https://doi.org/10.1016/j.sajb.2009.10.007
Yadav VK, Fulekar MH (2018) The current scenario of thermal power plants and fly ash: production and utilization with a focus in India. Int J Adv Eng Res Dev 5(4):2348–6406
Yadav B, Bajaj A, Saxena M (2014) Impact of fly ash on physical properties of waterlogged soil, plant growth and root yield of Withania somnifera (L.) Dunal (Ashwagandha). Int J Curr Res Biosci Plant Biol 1(5):58–70
Zenk MH (1996) Heavy metal detoxification in higher plants -a review. Gene 179(21):30
Zhang X, Gao B, Xia H (2014a) Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of bana grass and vetiver grass. Ecotoxicol Environ Saf 106:102–108. https://doi.org/10.1016/j.ecoenv.2014.04.025
Zhang XF, Zhang XH, Gao B, Zhian L, HanPing X, HaiFang L, Jian L (2014b) Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of an energy crop, king grass (Pennisetum americanum x P. purpureum). Biomass Bioenerg 67:179–187. https://doi.org/10.1016/j.biombioe.2014.04.030
Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to zinc-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101:1–9. https://doi.org/10.1016/j.jinorgbio.2006.05.011
Acknowledgements
Financial support from Council of Science and Technology (CST), Department of Science and Technology, UP, Government of India through the research grant (CST/AAS/D-1549) to Dr. Sumedha Mohan and Dr. Praveen Dahiya is gratefully acknowledged. Authors also would like to thank Amity University Uttar Pradesh, Noida, for providing the facilities to carry out this work.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Varshney, A., Mohan, S. & Dahiya, P. Growth and antioxidant responses in plants induced by heavy metals present in fly ash. Energ. Ecol. Environ. 6, 92–110 (2021). https://doi.org/10.1007/s40974-020-00191-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40974-020-00191-1