Skip to main content
Log in

Mesophilic bioleaching performance of copper, cobalt and nickel with emphasis on complex orebodies of the Democratic Republic of Congo: a review of dynamic interactions between solids loading, microbiota activity and growth

  • Review Paper
  • Published:
Energy, Ecology and Environment Aims and scope Submit manuscript

Abstract

The copper, cobalt and nickel ores are still currently mined in the world. Its complex mineralogy creates extraction challenges by means of conventional metallurgical methods. Meanwhile, dealing with mesophilic strains in leaching process requires a compromise between solid loading and microbiota activity and growth. That is why, the influence of solid loading with fine or coarse particulates, the cell disturbance during the metal–microbes interactions depending upon the influence of gangue nature as well as metallic ions concentration on bacterial tolerance and the chemical and biological pathways involved in bioleaching mechanism of complex ores are summarised in detail in this paper. The current trends in mechanism research and diverse discovered set of microbiota and bacterial population coupled with bacterial adaptation methods contribute to optimise and improve the metals leaching performance and knowledge. In addition, the different existing complex mineralogical structures elaborate a main indirect mechanism with two different transitory mechanisms, before metal is converted into metal sulphate as wealthily explained in this comprehensive review. More data for cost analysis concomitant with extraction efficiency of metals using mesophilic bioleaching process are needed. However, it does not mean that other options are excluded in order to set a bio-hydrometallurgical chain. In fact, to consider also the concentration and purification of the pregnant leaching solution via phase separation and solvent extraction will be helpful. This obeys to the idea of option trees, where possible options are then systematically gaged with respect to critical criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdollahi H, Shaefaei S-Z, Noaparast M, Anafi Z, Aslan N (2013) Bio-dissolution of Cu, Mo and Re from molybdenite concentrate using a mix mesophilic microorganism in shake flask. Trans Nonferr Met Soc China 23(1):219–230

    Google Scholar 

  • Ahmadi A, Schaffie M, Manafi Z, Ranjbar M (2010) Electrochemical bioleaching of high-grade chalcopyrite flotation concentrates in a stirred bioreactor. Hydrometallurgy 104(1):99–105

    Google Scholar 

  • Albert RA, Archambault J, Rossello-Mora R, Tindall BJ, Matheny M (2005) Bacillus acidicola sp. Nov., A novel mesophilic acidophilic species isolated from acidic Sphagnum peat bogs in Wisconsin. Int J Syst Evol Microbiol 55:2125–2130

    Google Scholar 

  • Azabou S, Mechichi T, Sayadi S (2007) Zinc precipitation by heavy-metal tolerant sulfate reducing bacteria enriched on phosphogypsum as sulfate source. Miner Eng 2(20):173–178

    Google Scholar 

  • Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152

    Google Scholar 

  • Ballerstedt H, Pakostova E, Johnson DB, Schippers A (2017) Approaches for eliminating Bacteria introduced during in situ bioleaching of Fractured Sulfidic Ores in deep subsurface. Solid State Phenom 262:70–74

    Google Scholar 

  • Bampole D-L, Mulaba-Bafubiandi A-F (2018a) Comparative study of simultaneous removal performance of silica and solid colloidal particles from chalcopyrite bioleachate solution by washing and coagulation methods. J Sustain Metall 4(4):470–484

    Google Scholar 

  • Bampole D-L, Mulaba-Bafubiandi A-F (2018b) Removal performance of silica and solid colloidal particles from chalcopyrite bioleaching solution: Effect of coagulant (Magnafloc set #1597) for predicting an effective solvent extraction. Eng J 22(5):123–139

    Google Scholar 

  • Bampole D-L, Mulaba-Bafubiandi A-F (2019) Bioleaching of chalcopyrite and pyritic chalcocite using indigenous mesophilic bacteria. M-tech Thesis, University of Johannesburg. Johannesburg, South Africa

  • Bampole D-L, Mulamba E-L (2017) Mathematical modelling for enhancement heap leaching Of D.M.S. tailings for the recovering copper and cobalt: using the Taguchi method and analysis of variance. Int Organ Sci Res J IORS 5(10):50–57

    Google Scholar 

  • Bampole D-L, Luis P, Mulamba E-L (2017) Effect of Substrates during the adaptation of indigenous bacteria in bioleaching of sulphide ores. Am Sci Res J Eng Technol Sci ASRJETS 32(1):200–214

    Google Scholar 

  • Bampole D-L, Luis P, Mulaba-Bafubiandi A-F (2019) Sustainable copper extraction from mixed chalcopyrite-chalcocite using biomass. Trans Nonferr Met 29(10):2170–2182

    Google Scholar 

  • Battaglia-Brunet F, Joulian C, Garrido F, Dictor M-C, Morin D, Coupland K, Johnson D-B, Hallberg K-B, Baranger P (2002) An arsenic (III)-oxidizing bacterial population: selection, characterization, and performance in reactors. J Appl Microbiol 93:656–667

    Google Scholar 

  • Batumike M-J, Cailteux J-L, Kampunzu A-B (2007) Lithostratigraphy, basin development, base metal deposits, and regional correlations of the Neoproterozoic Nguba and Kundelungu rock successions, central African copperbelt. Gondwana Res 11(3):432–447

    Google Scholar 

  • Behera S-K, Mulaba-Bafubiandi A-F (2015) Advances in microbial leaching processes for nickel extraction from lateritic minerals—a review. Korean J Chem Eng 32:1447–1454

    Google Scholar 

  • Behera S-K, Manjaiah M, Sekar S, Panda K, Mavumengwana V, Mulaba-Bafubiandi A-F (2017) Optimization of microbial leaching of base metals from a South African sulfidic nickel ore concentrate by Acidithiobacillus ferrooxidans. Geomicrobiol J 35(6):1–13

    Google Scholar 

  • Bobadilla-Fazzini Roberto A (2017) Mineralogical dynamics of primary copper sulfides mediated by acidophilic biofilm formation. Solid State Phenom 262:325–329

    Google Scholar 

  • Bond P-L, Druschel G-K, Banfield J-F (2000a) Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Appl Microbiol Biotechnol 66(11):4962–4971

    Google Scholar 

  • Bond P-L, Smriga S-P, Banfield J-F (2000b) Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl Environ Microbiol 66(9):3842–3849

    Google Scholar 

  • Bomberg M, Mäkinen J, Salo M, Arnold M, Koukkari P (2017) Rare earth elements recovery and sulphate removal from phosphogypsum waste waters with sulphate reducing bacteria. In: 22nd International biohydrometallurgy symposium solid state phenomena, vol 262, pp 573–576

  • Brierley C-L (2008) How will bio-mining be applied in future? Trans Nonferr Met Soc China 18(6):1302–1310

    Google Scholar 

  • Bulatovic S-M (2007) In: Handbook of flotation reagents: chemistry, theory and practice – Flotation of sulfide ores, vol 1. Elsevier, Amsterdam, NL, pp 5–42

    Google Scholar 

  • Chandra C-S, Srichandan H, Kim D-J, Akcil A (2012) Biohydrometallurgy and bio-mineral processing technology: a review on its past, present and future. Res J Recent Sci 1(10):85–99

    Google Scholar 

  • Clark D-W, Newell A-J-H, Chilman G-F, Capps P-G (2000) Improving flotation recovery of copper sulphides by nitrogen gas and sulphidisation conditioning. Miner Eng 13(12):1197–1206

    Google Scholar 

  • Crundwell FK (2003) How do bacteria interact with minerals? Hydrometallurgy 71(1–2):75–81

    Google Scholar 

  • Denef V-J, Mueller R-S, Banfield J-F (2010) AMD biofilms: using model communities to study microbial evolution and ecological complexity in nature. Int Soc Microbial Ecol 4:599–610

    Google Scholar 

  • Deveci H, Akcil A, Alp I (2004) Bioleaching of complex zinc sulphides using mesophilic and thermophilic bacteria: comparative importance of pH and iron. Hydrometallurgy 73(3–4):293–303

    Google Scholar 

  • Dopson M, Johnson D-B (2012) Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms. Environ Microbiol 14:2620–2631

    Google Scholar 

  • Dreisinger D (2006) Copper leaching from primary sulphides: options for biological and chemical extraction of copper. Hydrometallurgy 83(1–4):10–20

    Google Scholar 

  • Edwards K-J, Gihring T-M, Banfield J-F (1999) Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment. Appl Environ Microbiol 65:3627–3632

    Google Scholar 

  • Escobar B, Lazo D (2003) Activation of bacteria in agglomerated ores by changing the composition of the leaching solution. Hydrometallurgy 71:173–178

    Google Scholar 

  • François A (1974) Stratigraphie, tectonique et minéralisations dans l’arc cuprifère du Shaba (République du Zaïre). In: Bartholomé P (ed) Gisements Stratiformes et Provinces Cuprifères. La Société Géologique de Belgique, Liège, pp 79–101

    Google Scholar 

  • Fu K-B, Lin H, Wang H, Wen H-W, Wen Z-L (2012) Comparative study on the passivation layers of copper sulphide minerals during bioleaching. Int J Miner Metall Mater 19(10):886–892

    Google Scholar 

  • Gericke M, Govender Y (2011) Bioleaching strategies for the treatment of nickel-copper sulphide concentrates. Miner Eng 24(11):1106–1112

    Google Scholar 

  • Golightly J-P (1981) Nickeliferous laterite deposits. Economic geology 75th anniversary. Econ Geol 75:710–735

    Google Scholar 

  • Golyshina O-V, Pivovarova T-A, Karavaiko G-I, Kondrat- T-F, Moore E-R-B, Abraham W-R, Lundsorf H, Timmis K-N, Yakimov M-M, Golyshin P-N (2000) Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron oxidizing, cell wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the archaea. Int J Syst Evol Microbiol 50:997–1006

    Google Scholar 

  • Golyshina O-V, Lünsdorf H, Kublanov Goldenstein N-I, Hinrichs K-U, Golyshin P-N (2016) The novel extremely acidophilic, cell-walldeficient archaeon Cuniculiplasma divulgatum gen. nov., sp. nov. Represents a new family, Cuniculiplasmataceae fam. nov., of the order thermoplasmatales. Int J Syst Evol Microbiol 66:332–340

    Google Scholar 

  • Gomez C, Blazquez M-L, Ballester A (1999) Bioleaching of a Spanish complex sulphide ore-bulk concentrate. Miner Eng 12(1):93–106

    Google Scholar 

  • Hallberg KB, Johnson DB (2003) Novel acidophiles isolated from moderately acidic mine drainage waters. Hydrometallurgy 71:139–148

    Google Scholar 

  • Hallberg K-B, Hedrich S, Johnson D-B (2011) Acidiferrobacter thiooxydans, gen. nov. sp. nov.; an acidophilic, thermo-tolerant, facultatively anaerobic iron- and sulfur-oxidizer of the family Ectothiorhodospiraceae. Extremophiles 15:271–279

    Google Scholar 

  • Harrison STL, Sissing A (2003) Thermophile mineral bioleaching performance: a compromise between maximising mineral loading and maximising microbial growth and activity. SAIMM J 103(1–4):139–142

    Google Scholar 

  • Hippe H (2000) Leptospirillum gen. nov. (Ex Markosyan (1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (Ex Markosyan 1972), nom. rev, and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. (1992). Int J Syst Evol Microbiol 50:501–503

    Google Scholar 

  • Ikumapayi F, Makitalo M, Johansson B, Rao KH (2012) Recycling process water in sulfide flotation. Part A: effect of calcium and sulfate on sphalerite recovery. Miner Metall Process 29(4):183–191

    Google Scholar 

  • Imamura H, Nhat K-P-H, Togawa H, Saito K, Iino R, Kato Y, Nagai T, Noji H (2009) Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer based genetically encoded indicators. Proc Natl Acad Sci USA 106:15651–15656

    Google Scholar 

  • Jennings P-H, Mcandrew R-T, Stratigakos E-S (1968) A hydrometallurgical method for recovering selenium and tellurium from copper refinery slimes TMS paper selection, A 68-9

  • Johnson DB, Hallberg K-B (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338(1–2):3–14

    Google Scholar 

  • Johnson DB, Hallberg KB (2009) Carbon, iron and sulfur metabolism in acidophilic microorganisms. In: Poole RK (ed) Principles of the magnetic methods in Geophysics. Academic Press, pp 201–255

  • Johnson D-B, Okibe N, Wakeman K, Liu Y (2008) Effect of temperature on the bioleaching of chalcopyrite concentrates containing different concentrations of Silver. Hydrometallurgy 94(1–4):42–47

    Google Scholar 

  • Johnson S-S, Chevrette M-G, Ehlmann B-L, Benison K-C (2015) Insights from the metagenome of an acid Salt Lake: the role of biology in an extreme depositional environment. PLoS ONE 10(4):1–19. https://doi.org/10.1371/journal.pone.0122869

    Article  Google Scholar 

  • Kamimura K, Sharmin S, Yoshino E, Tokuhisa M, Kanao T (2018) Draft genome sequence of Acidithiobacillus sp. strain SH, a marine acidophilic sulphur-oxidizing bacterium. Microbiol Resour Announc 6(6):1–2

    Google Scholar 

  • Kampunzu A-B et al (2005) Geochemical characterisation, provenance, source and depositional environment of ‘Roches Argilotalqueuses’ (RAT) and Mines Subgroups sedimentary rocks in the Neoproterozoic Katangan Belt (Congo): lithostratigraphic implications. J Afr Earth Sc 42(1–5):119–133

    Google Scholar 

  • Kampunzu A-B, Jourdan F, Bertrand H, Schaerer U, Blichert-Toft J, Feraud G (2007) Major and trace element and Sr, Nd, Hf, and Pb isotope compositions of the Karoo large igneous province, Botswana-Zimbabwe: lithosphere vs. mantle plume contribution. J Petrol 48:1043–1077

    Google Scholar 

  • Kefeni K-K, Msagati T-M, Mamba B-B (2017) Acid mine drainage: prevention, treatment options, and resource recovery: a review. J Clean Prod 151:475–493

    Google Scholar 

  • Kelly D-P, Wood A-P (2000a) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen.nov., Halothiobacillus gen. nov and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516

    Google Scholar 

  • Kelly DP, Wood AP (2000b) Reclassification of some species of Thiobacillus to the newly designated genera of Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516

    Google Scholar 

  • Kitobo W-S, Gaydardzhiev S, Frenay J, Ndala I (2009). Valorization and depollution of the rejections of Ancient Concentrator of Kipushi to Katanga in D.R. Congo. PhD Thesis, University of liege, Belgium

  • Kock D, Schippers A (2006) Geomicrobiological investigation of two different mine waste tailings generating acid mine drainage. Hydrometallurgy 83(1–4):167–175

    Google Scholar 

  • Kock D, Schippers A (2008) Quantitative microbial community analysis of three different sulfidic mine tailing dumps generating acid mine drainage. Appl Environ Microbiol 74(16):5211–5219

    Google Scholar 

  • Kongolo K, Mwema MD, Banza AN, Gock E (2003) Cobalt and zinc recovery from copper sulphate solution by solvent extraction. Miner Eng 16(12):1371–1374

    Google Scholar 

  • König H (1988) Archaebacterial cell envelopes. Can J Microbiol 34:395–406

    Google Scholar 

  • Kordosky G (2007) The copperbelt Africa—a renaissance in copper hydrometallurgy. In: IV, international copper hydrometallurgy workshop (Hydrocopper, 2007), 16–18 May, Vina del Mar, Chile, pp 1–54

  • Küsel K-T, Dorsch G, Acker Stackebrandt E (1999) Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose. Appl Environ Microbiol 65:3633–3640

    Google Scholar 

  • Liu Y-G, Zhou M, Zeng G-M, Li X, Xu W-H, Fan T (2006) Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching. J Hazard Mater 141(1):202–208

    Google Scholar 

  • Lizama H-M, Suzuki I (1989) Bacterial leaching of a sulphide ore by Thiobacillus ferrooxidans and Thiobacillus thiooxidans part II: column leaching studies. Hydrometallurgy 22(3):301–310

    Google Scholar 

  • Loi G, Trois P, Rossi G (1995) Biorotor®: a new development for biohydrometallurgical processing, vol 1. In: Vargas T, Jerez CA, Wiertz JV, Toledo H (eds) Biohydrometallurgical processing. University of Chile, Santiago, pp 263–271

    Google Scholar 

  • Loi G, Rossi G, Trois P (2006) “Reattore a tamburo rotante per idrometallurgia, bioidrometallurgia e trattamento delle acque di rifiuto per esercizio continuo” (Revolving barrel reactor for continuous operation for hydrometallurgy, biohydrometallurgy and water treatment), Italian Patent No. 0001329859; November 21

  • Martani F, Berterame N-M, Branduardi P (2017) Microbial stress: from molecules to systems. New Biotechnol 35:30–34

    Google Scholar 

  • Mehrabani J-V, Shafaei S-Z, Noaparast M, Mousavi S-M (2016) Bioleaching of a low grade sphalerite concentrate produced from tailings flotation. Int J Min Geo-Eng 50(2):169–173

    Google Scholar 

  • Monroy MG (1993) Bioleaching—refractory gold bearing sulphide ore cyanidation in devices of percolation: Behavior of the populations of Thiobacillus ferrooxidans and influence on mineralogy and operating conditions. University of Nancy 1, France

  • Moreira D, Amils R (1997) Phylogeny of Thiobacillus cuprinus and other mixotrophic thiobacilli: proposal for Thiomonas gen. nov. Int J Syst Bacteriol 47(2):522–528

    Google Scholar 

  • Morin D, Lips A, Pinches T, Huisman J, Frias C, Norberg A, Forssberg E (2006) BioMinE – Integrated project for the development of biotechnology for metal-bearing materials in Europe. Hydrometallurgy 83:69–76

    Google Scholar 

  • Mulaba-Bafubiandi A-F, Bell DT (2005) Some aspects of laboratory flotation of Co–Cu minerals from mixed oxide ores. In: Third Southern African conference on base metals, south african institute of mining and metallurgy, vol 3, pp 191–199

  • Nkulu N-G, Gaydardzhiev S, Mutamba M-E (2012) Bioleaching of the carrolite—applications at sulphide ores polymetallic of the Cupriferous Arc of Katanga in Republic Democratic of Congo (DRC). University of Liege, Belgium

    Google Scholar 

  • Nkulu G, Gaydardzhiev S, Mwema E (2013) Statistical analysis of bioleaching copper, cobalt and nickel from polymetalic concentrate originating from Kamoya deposit in the Democratic Republic of Congo. Miner Eng 48(1):77–85

    Google Scholar 

  • Nordbrand S, Bolme P (2007) Powering the mobile world: cobalt production for batteries in the DR Congo and Zambia, Report by Swed Watch as part of “Ma keITfair Campaign”: European-wide project on consumer electronics, with the financial assistance of the EU. SwedWatch 3:1–79

    Google Scholar 

  • Oguz H, Brehm A, Deckwer W-D (1987) Gas/liquid mass transfer in sparged agitated slurries. Chem Eng Sci 42(7):1815–1822

    Google Scholar 

  • Parker H (2016) Kamoa-Kakula project – Kakula 2016 Preliminary Economic Assessment. Internal report from Orewin IMC to Ivanhoe Mines, Janvier 2017

  • Pinches A, Chapman J-T, Riele T, Van Staden M (1988) The performance of bacterial leach reactors for the pre-oxidation of refractory gold bearing sulphide concentrates. In: Norris PR, Kelly DP (eds) Bio-hydrometallurgical proceedings, Science and Technology Letters. International Symposium Warwick 329-44, Kew, Survey

  • Plamen G, Marina N, Irena S, Lazarova A, Groudev S (2017) Leaching of valuable metals from copper slag by means of chemolithotrophic archaea and bacteria. J Min Geol Sci 60(2):127–130

    Google Scholar 

  • Rawlings D-E (2005) Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microbial Cell Factories 4:3–33

    Google Scholar 

  • Rawlings D-E, Dew D, Du Plessis C (2003) Bio-mineralization of metal-containing ores and concentrates. Trends Biotechnol 21:38–44

    Google Scholar 

  • Rea SM, McSweeney NJ, Degens BP, Morris C, Siebert HM, Kaksonen AH (2015) Salt-tolerant microorganisms potentially useful for bioleaching operations where fresh water is scarce. Miner Eng 75:126–132

    Google Scholar 

  • Robb L (2005a) Copper bottomed: understanding the Central African Copperbelt. Mater World 1:24–26

    Google Scholar 

  • Robb L (2005b) Recent advances in the geology and mineralization of the Central African Copperbelt. J Afr Earth Sc 42(1–5):1–214

    Google Scholar 

  • Ross TJ (2011) Fuzzy logic with engineering applications, 3rd edn. Wiley, pp 100–116. ISBN: 97 8-0-470-74376-8

  • Ruan R, Zhou E, Liu X, Wu B, Zhou G, Wen J (2010) Comparison on the leaching kinetics of chalcopyrite and pyrite with or without bacteria. Rare Met 29(6):552–556

    Google Scholar 

  • Sabrina M, Mauricio A, Pedro G, Clement C, Hannes S, Cecilia D (2017) Is the growth of microorganisms limited by carbon availability during chalcopyrite bioleaching? Hydrometallurgy 168:13–20

    Google Scholar 

  • Sampson M-I, Phillips C-V, Blake R-C (2000) Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulphides. Miner Eng 13:373–389

    Google Scholar 

  • Santos L-G, Barbosa A-F, Souza A-D, Lea V-A (2006) Bioleaching of a complex nickel–iron concentrate by mesophilic bacteria. Miner Eng 19:1251–1258

    Google Scholar 

  • Sasaki K, Nakamuta Y, Hirajima T, Tuovinen O-H (2009) Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus Ferrooxidans. Hydrometallurgy 95(1–2):153–158

    Google Scholar 

  • Schippers A (2004). Biogeochemistry of metal sulphide oxidation in mining environments, sediments and soils. In: Amend JP, Edwards KJ, Lyons TW (eds) Sulphur biogeochemistry—past and present. Boulder, Colorado, Geological Society of America, Special paper, 379, 49–62

    Google Scholar 

  • Schippers A, Sand W (1999) Bacterial leaching of metal sulphide proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulphur. Appl Environ Microbiol 65(1):310–321

    Google Scholar 

  • Schloen J-H, Elkin E-M (1954) The treatment of electrolytic copper refinery slimes. In: Butts A (ed) Copper: the science and technology of the metal, its alloys and compounds. Reinhold, New York, pp 205–289

    Google Scholar 

  • Schmandt D (2013) The Kamoa Copper Deposit, Democratic Republic of Congo: Stratigraphy, diagenetic and hydrothermal alteration, and mineralization. MSc-Thesis. Colorado School of Mines. University of Colorado, Colorado. USA

    Google Scholar 

  • Scholtz N-J, Pandit A-B, Harrison S-T-L (1997) Effect of solids suspension on microbial cell disruption. In: Nienow A (ed) Bioreactor and bioprocess fluid dynamics, pp 199–215

  • Shaligram N-S, Bule M, Bhambure R, Sudheer S, Sing K, Szkacs G, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compact in producing fungal strain. Process Biochem 44(8):939–943

    Google Scholar 

  • Shiers D-W, Collinson D-M, Watling H-R (2016) Life in heaps: a review of microbial responses to variable acidity in sulfide mineral bioleaching heaps for metal extraction. Res Microbiol 167(7):576–586

    Google Scholar 

  • Spolaore P, Joulian C, Gouin J, Morin D, d’Hugues P (2011) Relationship between bioleaching performance, bacterial community structure and mineralogy in the bioleaching of a copper concentrate in stirred-tank reactors. Appl Microbiol Biotechnol 89(2):441–448

    Google Scholar 

  • Third K-A, Cord-Ruwisch R, Watling H-R (2000) The role of iron-oxidizing bacteria in stimulation or inhibition of chalcopyrite bioleaching. Hydrometallurgy 57(3):225–233

    Google Scholar 

  • Torma A-E, Walden C-C, Duncan D-W, Branion R-M-R (1972) The effect of carbon dioxide and particle surface area on the microbiological leaching of a zinc sulphide concentrate. Biotechnol Bioeng 14(5):777–786

    Google Scholar 

  • Tsekova K, Kaimaktchiev A, Tzekova A (1998) Bioaccumulation of heavy metals by microorganisms. Biotechnol Equip 12:94–96

    Google Scholar 

  • Uryga A, Sadowsky Z, Grotowski A (2004) Bioleaching of cobalt from mineral products. Physicochem Probl Miner Process 38:291–299

    Google Scholar 

  • Vakylabad AB (2011) A comparison of bioleaching ability of mesophilic and moderately thermophilic culture on copper bioleaching from flotation concentrate and smelter dust. Int J Miner Process 101:94–99

    Google Scholar 

  • Visagie C-M, Hirooka Y, Tanney J-B et al (2014) Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. Study Mycol 78:63–139

    Google Scholar 

  • Wang Y, Su L, Zeng W, Qiu G, Wan L, Chen X, Zhou H (2014) Optimization of copper extraction for bioleaching of complex Cu-polymetallic concentrate by moderate thermophiles. Trans Nonferr Met Soc China 24(4):1161–1170

    Google Scholar 

  • Watling H-R (2008) The bioleaching of nickel-copper sulphides. Hydrometallurgy 91(1–4):70–88

    Google Scholar 

  • Watling HR, Collinson D-M, Li J, Mutch L-A, Perrot F-A, Rea S-M, Reith F, Watkin E-L-J (2014) Bioleaching of a low-grade copper ore, linking leach chemistry and microbiology. Miner Eng 56:35–44

    Google Scholar 

  • Xia L-X, Dai S-L, Yin C, Liu J-S, Hu Y, Qiu G-Z (2009) Comparison of bioleaching behaviors of different compositional sphalerite using Leptospirillum ferriphilum, Acidithiobacillus ferrooxidans and Acidithiobacillus caldus. J Ind Microbiol Biotechnol 36(6):845–852

    Google Scholar 

  • Xue L, Jian K, Wen B, Biao W, Shuang L (2015) Magnesium rich gangue dissolution in column bioleaching of chalcopyrite. Rare Metals 34(5):366–370

    Google Scholar 

  • Yahya A, Johnson D-B (2002) Bioleaching of pyrite at low pH and low redox potentials by novel mesophilic Gram-positive bacteria. Hydrometallurgy 63(2):181–188

    Google Scholar 

  • Yang CR, Qin WQ, Lai SS (2011) Bioleaching of a low grade nickel–copper–cobalt sulfide ore. Hydrometallurgy 106(1–2):32–34

    Google Scholar 

  • Yin Shenghua, Wang Leiming, Kabwe Eugie, Chen Xun, Yan Rongfu, An Kai, Zhang Lei, Aixiang Wu (2018) Copper Bioleaching in China: review and prospect. Minerals 8(32):2–26

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge and extend their gratitude to the University of Johannesburg for providing the means and facilities for research—not excluding the Mineral Processing and Technology Research Centre and the Metallurgy Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Lukumu Bampole.

Ethics declarations

Conflict of interest

The first author discloses that this work does not have any conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 691 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bampole, D.L., Mulaba-Bafubiandi, AF. Mesophilic bioleaching performance of copper, cobalt and nickel with emphasis on complex orebodies of the Democratic Republic of Congo: a review of dynamic interactions between solids loading, microbiota activity and growth. Energ. Ecol. Environ. 5, 61–83 (2020). https://doi.org/10.1007/s40974-019-00142-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40974-019-00142-5

Keywords

Navigation