Energy, Ecology and Environment

, Volume 3, Issue 2, pp 87–94 | Cite as

Soda lignin from Citrus sinensis bagasse: extraction, NMR characterization and application in bio-based synthesis of silver nanoparticles

  • Caio H. N. Barros
  • Danijela Stanisic
  • Bruna F. Morais
  • Ljubica Tasic
Original Research Article


Lignin is one of the most abundant natural materials with many important roles, especially in providing structural resilience of plants. It is formed through the radical polymerization of aromatic monomers and shows structural and compositional differences depending on sources, biosynthesis and processes used for its extraction. Herein, we present extraction of lignin from the Citrus sinensis (sweet orange) bagasse using full sequential extraction in a yield of 0.34% and report on the soda lignin nuclear magnetic resonance (NMR) properties (1H NMR and 2D NMR). The soda lignin was then applied in the sustainable synthesis of silver nanoparticles (AgNPs). The obtained silver nanoparticles showed unimodal distribution of sizes, spherical morphology, average diameters of 19.1 ± 4.7 nm and negative zeta potentials of − 28.5 ± 3.2 mV. The AgNPs were also found to be stable over several months.


Citrus sinensis (sweet orange, C. sinensis) bagasse Lignin Silver nanoparticles 



The authors would like to acknowledge the fundings provided by Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp—2015/12534-5) and Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq. We also thank Mr. Douglas Soares da Silva for conducting TEM analyses.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Adeyemi OS, Sulaiman F (2015) Evaluation of metal nanoparticles for drug delivery systems. J Biomed Res 29:145–149Google Scholar
  2. Ahmed S, Ahmad M, Swami B, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28CrossRefGoogle Scholar
  3. Aravantinos-Zafiris G, Oreopoulou V, Tzia C, Thomopoulos CD (1994) Fibre fraction from orange peel residues after pectin extraction. Food Sci Technol 27:468–471Google Scholar
  4. Azadi P, Inderwildi O, Farnood R, King D (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sustain Energy Rev 21:506–523CrossRefGoogle Scholar
  5. Ballottin D, Fulaz S, Souza M et al (2016) Elucidating protein involvement in the stabilization of the biogenic silver nanoparticles. Nanoscale Res Lett 11:313–322CrossRefGoogle Scholar
  6. Ballottin D, Fulaz S, Cabrini F et al (2017) Antimicrobial textiles: biogenic silver nanoparticles against Candida and Xanthomonas. Mater Sci Eng C Mater Biol Appl 75:582–589CrossRefGoogle Scholar
  7. Constant S, Wienk HLJ, Frissen AE et al (2016) New insights into the structure and composition of technical lignins: a comparative characterization study. Green Chem 18:2651–2665CrossRefGoogle Scholar
  8. Das V, Thomas R, Varghese R et al (2014) Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3. Biotech 4:121–126Google Scholar
  9. Dewick PM (2002) Medicinal natural products: a biosynthetic approach. Wiley, NewYorkGoogle Scholar
  10. Durán N, Durán M, Jesus M et al (2016a) Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine NBM 12:789–799CrossRefGoogle Scholar
  11. Durán N, Nakazato G, Seabra AB (2016b) Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments. Appl Microbiol Biotechnol 100:6555–6570CrossRefGoogle Scholar
  12. Durán N, Durán M, Souza C (2017) Silver and silver chloride nanoparticles and their anti-tick activity: a mini review. J Braz Chem Soc 28:927–932Google Scholar
  13. Duval A, Lawoko M (2014) A review on lignin-based polymeric, micro- and nano-structured materials. React Funct Polym 85:78–96CrossRefGoogle Scholar
  14. El Mansouri N, Salvadó J (2006) Structural characterization of technical lignins for the production of adhesives: application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins. Ind Crops Prod 24:8–16CrossRefGoogle Scholar
  15. Hu S, Hsieh Y (2015) Synthesis of surface bound silver nanoparticles on cellulose fibers using lignin as multi-functional agent. Carbohydr Polym 131:134–141CrossRefGoogle Scholar
  16. Hu S, Hsieh Y (2016) Silver nanoparticle synthesis using lignin as reducing and capping agents: a kinetic and mechanistic study. Int J Biol Macromol 82:856–862CrossRefGoogle Scholar
  17. Laurichesse S, Avérous L (2014) Chemical modification of lignins: towards biobased polymers. Prog Polym Sci 39:1266–1290CrossRefGoogle Scholar
  18. Li S, Lundquist K (1994) A new method for the analysis of phenolic groups in lignins by 1H NMR spectroscopy. Nord Pulp Pap Res J 9:191–195CrossRefGoogle Scholar
  19. Mansfield SD, Kim H, Lu F, Ralph J (2012) Whole plant cell wall characterization using solution-state 2D NMR. Nat Protoc 7:1579–1589CrossRefGoogle Scholar
  20. Marin S, Vlăsceanu G, Ţiplea RA et al (2015) Applications and toxicity of silver nanoparticles: a recent review. Curr Top Med Chem 15:1596–1604CrossRefGoogle Scholar
  21. Menezes F, Fernandes R, Rocha G, Filho R (2016) Physicochemical characterization of residue from the enzymatic hydrolysis of sugarcane bagasse in a cellulosic ethanol process at pilot scale. Ind Crops Prod 94:463–470CrossRefGoogle Scholar
  22. Mousavioun P, Doherty W (2010) Chemical and thermal properties of fractionated bagasse soda lignin. Ind Crops Prod 31:52–58CrossRefGoogle Scholar
  23. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83CrossRefGoogle Scholar
  24. Sharma V, Yngard R, Lin Y (2009) Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96CrossRefGoogle Scholar
  25. Shen Z, Luo Y, Wang Q et al (2014) High-value utilization of lignin to synthesize Ag nanoparticles with detection capacity for Hg2+. Appl Mater Interfaces 6:16147–16155CrossRefGoogle Scholar
  26. Thakur V, Thakur M, Raghavan P, Kessler M (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092CrossRefGoogle Scholar
  27. Ververis C, Georghiou K, Danielidis D, Hatzinikolaou DG, Santas P, Santas R, Corleti V (2007) Cellulose, hemicellulose, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresour Technol 98:296–301CrossRefGoogle Scholar
  28. Watkins D, Nuruddin M, Hosur M et al (2015) Extraction and characterization of lignin from different biomass resources. J Mater Res Technol 4:26–32CrossRefGoogle Scholar
  29. Wen J, Sun S, Xue B, Sun R (2013) Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials 6:359–391CrossRefGoogle Scholar
  30. Yola M, Gupta V, Eren T et al (2014) A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim Acta 120:204–211CrossRefGoogle Scholar
  31. Zeng J, Helms G, Gao X, Chen S (2013) Quantification of wheat straw lignin structure by comprehensive NMR analysis. J Agric Food Chem 61:10848–10857Google Scholar

Copyright information

© Joint Center on Global Change and Earth System Science of the University of Maryland and Beijing Normal University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Caio H. N. Barros
    • 1
  • Danijela Stanisic
    • 1
  • Bruna F. Morais
    • 1
  • Ljubica Tasic
    • 1
  1. 1.Departamento de Química Orgânica, Laboratório de Química Biológica, Instituto de QuímicaUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations