Skip to main content
Log in

The effect of interface enhancement on the mechanical properties of fibre-reinforced PA6 matrix composites in material extrusion-based additive manufacturing

  • Full Research Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

Using different fibres and ratios can considerably enhance the mechanical properties of thermoplastic composites, and the fibre-matrix interface plays a crucial role in realizing the effects of reinforcements. This research aims to enhance the fibre-matrix interface using sustainable resources to increase the mechanical properties of composites produced using additive manufacturing. To do this, cellulose nanofibrils (CNF) were used for surface modification of carbon, glass, and hybrid (carbon + glass) fibres used in reinforcements in the PA6 matrix. Samples were produced by 3D printing done through material extrusion (MEX). and the effects of fibre types and ratios, print layer thickness, and interface enhancement between fibre-matrix on mechanical properties were investigated experimentally. Results reveal a 5 to 11% increase in the tensile strength of the carbon fibre-reinforced samples, whereas a 72 to 88% increase was observed for the glass fibre-reinforced samples. Furthermore, the tensile modulus value has been increased 4 times in carbon fibre reinforcement samples that used modified fibre compared to PA6 pure. Finally, different types and ratios of fibres had an impact on the glass transition temperature, but there was little to no change in the melting and crystallization temperatures. Our work highlights the potential of the proposed CNF modification made to the fibres for MEX production to produce parts with higher mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lanzotti A, Martorelli M, Maietta S, Gerbino S, Penta F, Gloria A (2019) A comparison between mechanical properties of specimens 3D printed with virgin and recycled PLA. Procedia CIRP 79:143–146. https://doi.org/10.1016/j.procir.2019.02.030

    Article  Google Scholar 

  2. Zaverl M, Seydibeyoğlu MÖ, Misra M, Mohanty AK (2011) Studies on Recyclability of polyhydroxybutyrate-co-valerate bioplastic: multiple melt processing and performance evaluations. J Appl Polym Sci 116:2658–2667. https://doi.org/10.1002/app

    Article  Google Scholar 

  3. Reese J, Vorhof M, Hoffmann G, Böhme K, Cherif C (2020) Joule heating of dry textiles made of recycled carbon fibers and PA6 for the series production of thermoplastic composites. J Eng Fiber Fabr. https://doi.org/10.1177/1558925020905828

    Article  Google Scholar 

  4. Yang Y, Boom R, Irion B, van Heerden DJ, Kuiper P, de Wit H (2012) Recycling of composite materials. Chem Eng Process 51:53–68. https://doi.org/10.1016/j.cep.2011.09.007

    Article  Google Scholar 

  5. Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R (2017) Polymers for 3D printing and customized additive manufacturing. Chem Rev 117:10212–10290. https://doi.org/10.1021/acs.chemrev.7b00074

    Article  Google Scholar 

  6. Gibson I, Rosen D, Stucker B (2015) Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, 2nd edn. Springer, Cham. https://doi.org/10.1007/978-1-4939-2113-3

    Book  Google Scholar 

  7. Dizon JRC, Espera AH, Chen Q, Advincula RC (2018) Mechanical characterization of 3D-printed polymers. Addit Manuf 20:44–67. https://doi.org/10.1016/j.addma.2017.12.002

    Article  Google Scholar 

  8. Ryan J, Dizon C, Espera AH, Chen Q, Advincula RC (2018) Mechanical characterization of 3D-printed polymers. Addit Manuf 20:44–67. https://doi.org/10.1016/j.addma.2017.12.002

    Article  Google Scholar 

  9. Peng Y, Wu Y, Wang K, Gao G, Ahzi S (2019) Synergistic reinforcement of polyamide-based composites by combination of short and continuous carbon fibers via fused filament fabrication. Compos Struct 207:232–239. https://doi.org/10.1016/j.compstruct.2018.09.014

    Article  Google Scholar 

  10. Yousefian H, Rodrigue D (2016) Effect of nanocrystalline cellulose on morphological, thermal, and mechanical properties of Nylon 6 composites. Polym Compos 37:1473–1479. https://doi.org/10.1002/PC.23316

    Article  Google Scholar 

  11. Zhong W, Li F, Zhang Z, Song L, Li Z (2001) Short fiber reinforced composites for fused deposition modeling. Mater Sci Eng A 301:125–130

    Article  Google Scholar 

  12. Tekinalp HL, Kunc V, Velez-Garcia GM, Duty CE, Love LJ, Naskar AK, Blue CA, Ozcan S (2014) Highly oriented carbon fiber-polymer composites via additive manufacturing. Compos Sci Technol 105:144–150. https://doi.org/10.1016/j.compscitech.2014.10.009

    Article  Google Scholar 

  13. Papon EA, Haque A (2019) Fracture toughness of additively manufactured carbon fiber reinforced composites. Addit Manuf 26:41–52. https://doi.org/10.1016/j.addma.2018.12.010

    Article  Google Scholar 

  14. Ning F, Cong W, Hu Y, Wang H (2017) Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: effects of process parameters on tensile properties. J Compos Mater 51:451–462. https://doi.org/10.1177/0021998316646169

    Article  Google Scholar 

  15. Love LJ, Kunc V, Rios O, Duty CE, Elliott AM, Post BK, Smith RJ, Blue CA (2014) The importance of carbon fiber to polymer additive manufacturing. J Mater Res 29:1893–1898. https://doi.org/10.1557/jmr.2014.212

    Article  Google Scholar 

  16. Ivey M, Melenka GW, Carey JP, Ayranci C (2017) Characterizing short-fiber-reinforced composites produced using additive manufacturing. Adv Manuf Polym Compos Sci 3:81–91. https://doi.org/10.1080/20550340.2017.1341125

    Article  Google Scholar 

  17. Ferreira RTL, Amatte IC, Dutra TA, Bürger D (2017) Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers. Compos B Eng 124:88–100. https://doi.org/10.1016/j.compositesb.2017.05.013

    Article  Google Scholar 

  18. Hassen AA, Lindahl J, Chen X, Post B, Love L, Kunc V (2016) Additive manufacturing of composite tooling using high temperature thermoplastic materials. In: SAMPE conference proceedings, May 2016, Long Beach, CA, pp 2648–2658

  19. Carneiro OS, Silva AF, Gomes R (2015) Fused deposition modeling with polypropylene. Mater Des 83:768–776. https://doi.org/10.1016/j.matdes.2015.06.053

    Article  Google Scholar 

  20. Gardner JM, Sauti G, Kim JW, Cano RJ, Wincheski RA, Stelter CJ, Grimsley BW, Working DC, Siochi EJ (2016) Additive manufacturing of multifunctional components using high density carbon nanotube yarn filaments. NASA. https://ntrs.nasa.gov/citations/20160009176

  21. Shofner ML, Lozano K, Rodríguez-Macías FJ, Barrera EV (2003) Nanofiber-reinforced polymers prepared by fused deposition modeling. J Appl Polym Sci 89:3081–3090. https://doi.org/10.1002/app.12496

    Article  Google Scholar 

  22. Anwer MAS, Naguib HE (2016) Study on the morphological, dynamic mechanical and thermal properties of PLA carbon nanofibre composites. Compos B Eng 91:631–639. https://doi.org/10.1016/j.compositesb.2016.01.039

    Article  Google Scholar 

  23. Papon EA, Haque A (2018) Tensile properties, void contents, dispersion and fracture behaviour of 3D printed carbon nanofiber reinforced composites. J Reinf Plast Compos 37:381–395. https://doi.org/10.1177/0731684417750477

    Article  Google Scholar 

  24. Hou Z, Tian X, Zhang J, Li D (2018) 3D printed continuous fibre reinforced composite corrugated structure. Compos Struct 184:1005–1010. https://doi.org/10.1016/j.compstruct.2017.10.080

    Article  Google Scholar 

  25. Chabaud G, Castro M, Denoual C, Le Duigou A (2019) Hygromechanical properties of 3D printed continuous carbon and glass fibre reinforced polyamide composite for outdoor structural applications. Addit Manuf 26:94–105. https://doi.org/10.1016/j.addma.2019.01.005

    Article  Google Scholar 

  26. Chacón JM, Caminero MA, Núñez PJ, García-Plaza E, García-Moreno I, Reverte JM (2019) Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: effect of process parameters on mechanical properties. Compos Sci Technol 181:107688. https://doi.org/10.1016/j.compscitech.2019.107688

    Article  Google Scholar 

  27. Zhang J, Zhou Z, Zhang F, Tan Y, Tu Y, Yang B (2020) Performance of 3D-printed continuous-carbon-fiber-reinforced plastics with pressure. Materials 13:471. https://doi.org/10.3390/ma13020471

    Article  Google Scholar 

  28. Matsuzaki R, Ueda M, Namiki M, Jeong TK, Asahara H, Horiguchi K, Nakamura T, Todoroki A, Hirano Y (2016) Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci Rep 6:1–7. https://doi.org/10.1038/srep23058

    Article  Google Scholar 

  29. Li N, Li Y, Liu S (2016) Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing. J Mater Process Technol 238:218–225. https://doi.org/10.1016/j.jmatprotec.2016.07.025

    Article  Google Scholar 

  30. Justo J, Távara L, García-Guzmán L, París F (2018) Characterization of 3D printed long fibre reinforced composites. Compos Struct 185:537–548. https://doi.org/10.1016/j.compstruct.2017.11.052

    Article  Google Scholar 

  31. Hu Q, Duan Y, Zhang H, Liu D, Yan B, Peng F (2018) Manufacturing and 3D printing of continuous carbon fiber prepreg filament. J Mater Sci 53:1887–1898. https://doi.org/10.1007/s10853-017-1624-2

    Article  Google Scholar 

  32. Kabir SMF, Mathur K, Seyam AFM (2020) A critical review on 3D printed continuous fiber-reinforced composites: history, mechanism, materials and properties. Compos Struct 232:111476. https://doi.org/10.1016/j.compstruct.2019.111476

    Article  Google Scholar 

  33. Caminero MA, Chacón JM, García-Moreno I, Reverte JM (2018) Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. Polym Test 68:415–423. https://doi.org/10.1016/j.polymertesting.2018.04.038

    Article  Google Scholar 

  34. Tian X, Liu T, Wang Q, Dilmurat A, Li D, Ziegmann G (2017) Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites. J Clean Prod 142:1609–1618. https://doi.org/10.1016/j.jclepro.2016.11.139

    Article  Google Scholar 

  35. Tian X, Liu T, Yang C, Wang Q, Li D (2016) Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. Compos Part A Appl Sci Manuf 88:198–205. https://doi.org/10.1016/j.compositesa.2016.05.032

    Article  Google Scholar 

  36. Sugiyama K, Matsuzaki R, Ueda M, Todoroki A, Hirano Y (2018) 3D printing of composite sandwich structures using continuous carbon fiber and fiber tension. Compos Part A Appl Sci Manuf 113:114–121. https://doi.org/10.1016/j.compositesa.2018.07.029

    Article  Google Scholar 

  37. Silva M, Pereira AM, Alves N, Mateus A, Malça C (2017) A hybrid processing approach to the manufacturing of polyamide reinforced parts with carbon fibers. Procedia Manuf 12:195–202. https://doi.org/10.1016/j.promfg.2017.08.024

    Article  Google Scholar 

  38. Brenken B, Barocio E, Favaloro A, Kunc V, Pipes RB (2018) Fused filament fabrication of fiber-reinforced polymers: a review. Addit Manuf 21:1–16. https://doi.org/10.1016/j.addma.2018.01.002

    Article  Google Scholar 

  39. Brooks H, Molony S (2016) Design and evaluation of additively manufactured parts with three dimensional continuous fibre reinforcement. Mater Des 90:276–283. https://doi.org/10.1016/j.matdes.2015.10.123

    Article  Google Scholar 

  40. Li J (2008) Interfacial studies on the O3 modified carbon fiber-reinforced polyamide 6 composites. Appl Surf Sci 255:2822–2824. https://doi.org/10.1016/j.apsusc.2008.08.013

    Article  Google Scholar 

  41. Liu T, Tian X, Zhang M, Abliz D, Li D, Ziegmann G (2018) Interfacial performance and fracture patterns of 3D printed continuous carbon fiber with sizing reinforced PA6 composites. Compos Part A Appl Sci Manuf 114:368–376. https://doi.org/10.1016/j.compositesa.2018.09.001

    Article  Google Scholar 

  42. Kim JS, Lee CS, Lee SW, Kim SM, Choi JH, Chung H, Lee PH (2020) Fabrication and characterization of hollow glass beads-filled thermoplastic composite filament developed for material extrusion additive manufacturing. J Compos Mater 54:607–615. https://doi.org/10.1177/0021998319863836

    Article  Google Scholar 

  43. Sun X, Huang C, Wang L, Liang L, Cheng Y, Fei W, Li Y (2021) Recent progress in graphene/polymer nanocomposites[55]. Adv Mater 33:5. https://doi.org/10.1002/adma.202001105

    Article  Google Scholar 

  44. Shameem MM, Sasikanth SM, Annamalai R, Raman RG (2021) A brief review on polymer nanocomposites and its applications[56]. Mater Today Proc 45:2536–2539. https://doi.org/10.1016/j.matpr.2020.11.254

    Article  Google Scholar 

  45. Baig N, Kammakakam I, Falath W, Kammakakam I (2021) Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges[57]. Mater Adv 2:1821–1871. https://doi.org/10.1039/d0ma00807a

    Article  Google Scholar 

  46. Watson-Wright C, Singh D, Demokritou P (2017) Toxicological implications of released particulate matter during thermal decomposition of nano-enabled thermoplastics. NanoImpact 5:29–40. https://doi.org/10.1016/j.impact.2016.12.003

    Article  Google Scholar 

  47. DeLoid G, Casella B, Pirela S, Filoramo R, Pyrgiotakis G, Demokritou P, Kobzik L (2016) Effects of engineered nanomaterial exposure on macrophage innate immune function. NanoImpact 2:70–81. https://doi.org/10.1016/j.impact.2016.07.001

    Article  Google Scholar 

  48. Benkaddour A, Demir EC, Jankovic NC, Kim CI, McDermott MT, Ayranci C (202) Composites part C : open access A hydrophobic coating on cellulose nanocrystals improves the mechanical properties of, composites part C: open access

  49. Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567. https://doi.org/10.1163/156856108X295509

    Article  Google Scholar 

  50. Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12:3638–3644. https://doi.org/10.1021/bm2008907

    Article  Google Scholar 

  51. Eichhorn SJ (2011) Cellulose nanowhiskers: Promising materials for advanced applications. Soft Matter 7:303–315. https://doi.org/10.1039/c0sm00142b

    Article  Google Scholar 

  52. Kafy A, Kim HC, Zhai L, Kim JW, Van Hai L, Kang TJ, Kim J (2017) Cellulose long fibers fabricated from cellulose nanofibers and its strong and tough characteristics. Sci Rep 7(1):1–8. https://doi.org/10.1038/s41598-017-17713-3

    Article  Google Scholar 

  53. Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A Appl Sci Manuf 83:2–18. https://doi.org/10.1016/j.compositesa.2015.10.041

    Article  Google Scholar 

  54. Chakrabarty A, Teramoto Y (2018) Recent advances in nanocellulose composites with polymers: a guide for choosing partners and how to incorporate them. Polymers 10(5):17. https://doi.org/10.3390/POLYM10050517

    Article  Google Scholar 

  55. Huang F, Wu X, Yu Y, Lu Y, Chen Q (2017) Acylation of cellulose nanocrystals with acids/trifluoroacetic anhydride and properties of films from esters of CNCs. Carbohydr Polym 155:525–534. https://doi.org/10.1016/j.carbpol.2016.09.010

    Article  Google Scholar 

  56. Mao J, Abushammala H, Brown N, Laborie M-P (2017) Comparative assessment of methods for producing cellulose i nanocrystals from cellulosic sources. In: ACS symposium series, pp 19–53. https://doi.org/10.1021/bk-2017-1251.ch002

  57. Qua EH, Hornsby PR, Sharma HSS, Lyons G, Mccall RD (2009) Preparation and characterization of poly(vinyl alcohol) nanocomposites made from cellulose nanofibers. J Appl Polym Sci 113:2238–2247. https://doi.org/10.1002/app.30116

    Article  Google Scholar 

  58. Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97:2014–2025. https://doi.org/10.1002/app.21779

    Article  Google Scholar 

  59. Wang D, Cheng W, Wang Q, Zang J, Zhang Y, Han G (2019) Preparation of electrospun chitosan/poly(ethylene oxide) composite nanofibers reinforced with cellulose nanocrystals: Structure, morphology, and mechanical behavior. Compos Sci Technol 182:107774. https://doi.org/10.1016/j.compscitech.2019.107774

    Article  Google Scholar 

  60. Fang H, Chen X, Wang S, Cheng S, Ding Y (2019) Enhanced mechanical and oxygen barrier performance in biodegradable polyurethanes by incorporating cellulose nanocrystals with interfacial polylactide stereocomplexation. Cellulose 26:9751–9764. https://doi.org/10.1007/s10570-019-02742-0

    Article  Google Scholar 

  61. Chakrabarty A, Teramoto Y (2018) Recent advances in nanocellulose composites with polymers: a guide for choosing partners and how to incorporate them. Polymers (Basel) 10:517. https://doi.org/10.3390/polym10050517

    Article  Google Scholar 

  62. Hendren KD, Baughman TW, Deck PA, Foster EJ (2020) In situ dispersion and polymerization of polyethylene cellulose nanocrystal-based nanocomposites. J Appl Polym Sci 137:48500. https://doi.org/10.1002/app.48500

    Article  Google Scholar 

  63. Sojoudiasli H, Heuzey M-C, Carreau PJ (2018) Mechanical and morphological properties of cellulose nanocrystal-polypropylene composites. Polym Compos 39:3605–3617. https://doi.org/10.1002/pc.24383

    Article  Google Scholar 

  64. Zhang Z, Sèbe G, Wang X, Tam KC (2018) UV-absorbing cellulose nanocrystals as functional reinforcing fillers in poly(vinyl chloride) films. ACS Appl Nano Mater 1:632–641. https://doi.org/10.1021/acsanm.7b00126

    Article  Google Scholar 

  65. Neves RM, Lopes KS, Zimmermann MVG, Poletto M, Zattera AJ (2019) Characterization of polystyrene nanocomposites and expanded nanocomposites reinforced with cellulose nanofibers and nanocrystals. Cellulose 26:4417–4429. https://doi.org/10.1007/s10570-019-02392-2

    Article  Google Scholar 

  66. Corrêa AC, de Morais Teixeira E, Carmona VB, Teodoro KBR, Ribeiro C, Mattoso LHC, Marconcini JM (2014) Obtaining nanocomposites of polyamide 6 and cellulose whiskers via extrusion and injection molding. Cellulose 21:311–322. https://doi.org/10.1007/s10570-013-0132-z

    Article  Google Scholar 

  67. Alnaqbi MA, Al Blooshi AG, Greish YE (2020) Polyethylene and polyvinyl chloride-blended polystyrene nanofibrous sorbents and their application in the removal of various oil spills. Adv Polym Technol. https://doi.org/10.1155/2020/4097520

    Article  Google Scholar 

  68. Corrêa AC, de Morais Teixeira E, Carmona VB, Teodoro KBR, Ribeiro C, Mattoso LHC, Marconcini JM (2014) Obtaining nanocomposites of polyamide 6 and cellulose whiskers via extrusion and injection molding. Cellulose 21:311–322. https://doi.org/10.1007/S10570-013-0132-Z/TABLES/3

    Article  Google Scholar 

  69. Çetin NS, Tingaut P, Özmen N, Henry N, Harper D, Dadmun M, Sèbe G (2009) Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions. Macromol Biosci 9:997–1003. https://doi.org/10.1002/mabi.200900073

    Article  Google Scholar 

  70. Bendahou A, Hajlane A, Dufresne A, Boufi S, Kaddami H (2015) Esterification and amidation for grafting long aliphatic chains on to cellulose nanocrystals: a comparative study. Res Chem Intermed 41:4293–4310. https://doi.org/10.1007/s11164-014-1530-z

    Article  Google Scholar 

  71. Liu Y, Li M, Qiao M, Ren X, Huang T-S, Buschle-Diller G (2017) Antibacterial membranes based on chitosan and quaternary ammonium salts modified nanocrystalline cellulose. Polym Adv Technol 28:1629–1635. https://doi.org/10.1002/pat.4032

    Article  Google Scholar 

  72. Kaboorani A, Riedl B (2015) Surface modification of cellulose nanocrystals (CNC) by a cationic surfactant. Ind Crops Prod 65:45–55. https://doi.org/10.1016/j.indcrop.2014.11.027

    Article  Google Scholar 

  73. Benkaddour A, Demir EC, Jankovic NC, Il Kim C, McDermott MT, Ayranci C (2022) A hydrophobic coating on cellulose nanocrystals improves the mechanical properties of polyamide-6 nanocomposites. J Compos Mater 56:1775–1788. https://doi.org/10.1177/00219983221075418

    Article  Google Scholar 

  74. Huang F-Y (2012) Thermal properties and thermal degradation of cellulose tri-stearate (CTs). Polymers (Basel) 4:1012–1024. https://doi.org/10.3390/polym4021012

    Article  Google Scholar 

  75. Huang S, Li H, Jiang S, Chen X, An L (2011) Crystal structure and morphology influenced by shear effect of poly(l-lactide) and its melting behavior revealed by WAXD, DSC and in-situ POM. Polymer (Guildf) 52:3478–3487. https://doi.org/10.1016/j.polymer.2011.05.044

    Article  Google Scholar 

  76. Antonio Travieso-Rodriguez J, Zandi MD, Jerez-Mesa R, Lluma-Fuentes J (2020) Fatigue behavior of PLA-wood composite manufactured by fused filament fabrication. J Mater Res Technol 9:8507–8516. https://doi.org/10.1016/J.JMRT.2020.06.003

    Article  Google Scholar 

  77. Dogru A, Seydibeyoglu MO (2023) Production and characterization of fiber reinforced polymer composites by additive manufacturing method. 0.2/JQUERY.MIN.JS

  78. Parandoush P, Lin D (2017) A review on additive manufacturing of polymer-fiber composites. Compos Struct 182:36–53. https://doi.org/10.1016/j.compstruct.2017.08.088

    Article  Google Scholar 

  79. Galeja M, Hejna A, Kosmela P, Kulawik A (2020) Static and dynamic mechanical properties of 3D printed ABS as a function of raster angle. Materials 13:295. https://doi.org/10.3390/MA13020297

    Article  Google Scholar 

  80. Goh GD, Yap YL, Agarwala S, Yeong WY (2019) Recent progress in additive manufacturing of fiber reinforced polymer composite. Adv Mater Technol. https://doi.org/10.1002/ADMT.201800271

    Article  Google Scholar 

Download references

Acknowledgements

The author, A Dogru received TUBITAK 2214A support to carry out his studies at the University of Alberta. In addition, funding was provided for materials, tests, and analyses within the scope of A Dogru's doctoral thesis with the İKCU BAP project numbered 2021-TDR-FEBE-0003. The authors gratefully acknowledge the valuable contribution made by the Eurotec Company in the production of compound raw materials.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was collaboratively authored, and all authors have approved the final version.

Corresponding author

Correspondence to Alperen Doğru.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doğru, A., Seydibeyoğlu, M.Ö. & Ayranci, C. The effect of interface enhancement on the mechanical properties of fibre-reinforced PA6 matrix composites in material extrusion-based additive manufacturing. Prog Addit Manuf (2024). https://doi.org/10.1007/s40964-024-00628-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40964-024-00628-7

Keywords

Navigation