Skip to main content

Advertisement

Log in

Sustainability of additive manufacturing: a comprehensive review

  • Review Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

Additive manufacturing (AM) is a promising technology for medical applications. This review paper aims to fill this gap by analysing the sustainability aspects of AM, including its environmental, economic, and social implications. The main objective of the review study is to provide dependable and achievable sustainability guidelines for AM by evaluating the advantages, methods of implementation, and obstacles connected with Sustainable Additive Manufacturing (SAM) systems. The review study will enhance our understanding of the environmental impact of AM by providing a more holistic perspective on the technology and its potential consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Colorado HA, Velásquez EIG, Monteiro SN (2020) Sustainability of additive manufacturing: the circular economy of materials and environmental perspectives. J Mater Res Technol 9(4):8221–8234

    Article  Google Scholar 

  2. Niaki MK, Torabi SA, Nonino F (2019) Why manufacturers adopt additive manufacturing technologies: the role of sustainability. J Clean Prod 222:381–392

    Article  Google Scholar 

  3. Hernandez Korner ME, Lambán MP, Albajez JA, Santolaria J, Ng-Corrales LdC, Royo J (2020) Systematic literature review: integration of additive manufacturing and industry 4.0. Metals 10(8):1061

    Article  Google Scholar 

  4. Monzón M, Ortega Z, Martínez A, Ortega F (2015) Standardization in additive manufacturing: activities carried out by international organizations and projects. Int J Adv Manuf Technol 76:1111–1121

    Article  Google Scholar 

  5. Thomas D (2016) Costs, benefits, and adoption of additive manufacturing: a supply chain perspective. Int J Adv Manuf Technol 85:1857–1876

    Article  Google Scholar 

  6. Tofail SA, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C (2018) Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today 21(1):22–37

    Article  Google Scholar 

  7. Altıparmak SC, Yardley VA, Shi Z, Lin J (2021) Challenges in additive manufacturing of high-strength aluminium alloys and current developments in hybrid additive manufacturing. Int J Lightweight Mater Manuf 4(2):246–261

    Google Scholar 

  8. Arunkumar D, Basavakumar K, Sharath P, Pattanaik A (2023) additive manufacturing in automotive industries. In: Practical implementations of additive manufacturing technologies. Springer, pp 205–218

  9. da Silva LRR, Sales WF, Campos FdAR, de Sousa JAG, Davis R, Singh A, Coelho RT, Borgohain B (2021) A comprehensive review on additive manufacturing of medical devices. Prog Addit Manuf 6(3):517–553

    Article  Google Scholar 

  10. Saleh lghamdi S, John S, Roy Choudhury N, Dutta NK (2021) Additive manufacturing of polymer materials: progress, promise and challenges. Polymers 13(5):753

    Article  Google Scholar 

  11. Bonnard R (2017) An advanced STEP-NC platform for additive manufacturing. In: International conference on additive manufacturing in products and applications. Springer, pp 127–136

  12. Aboutaleb AM, Bian L, Elwany A, Shamsaei N, Thompson SM, Tapia G (2017) Accelerated process optimization for laser-based additive manufacturing by leveraging similar prior studies. IISE Trans 49(1):31–44

    Article  Google Scholar 

  13. Galimberti G, Doubrovski E, Guagliano M, Previtali B, Verlinden J (2016) Investigating the links between the process parameters and their influence on the aesthetic evaluation of selective laser melted parts. In: Proceedings of the 27th annual international solid freeform fabrication symposium, pp 2367–2387

  14. Buchanan C, Gardner L (2019) Metal 3D printing in construction: a review of methods, research, applications, opportunities and challenges. Eng Struct 180:332–348

    Article  Google Scholar 

  15. Solberg S (2016) Cost-efficient low-volume production through additive manufacturing. University of Stavanger, Stavanger

    Google Scholar 

  16. Klahn C, Fontana F (2017) Impact and assessment of design on higher order benefits. In: Challenges for technology innovation: an Agenda for the future. CRC Press, pp 237–242

  17. Mirkouei A, Silwal B, Ramiscal L (2017) Enhancing economic and environmental sustainability benefits across the design and manufacturing of medical devices: a case study of ankle foot orthosis. In: International design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers, p V004T05A005

  18. Singh Sodhi GP, Bhakar V, Singh G, Singh H, Pandey PM, Pan S (2022) Environmentally conscious biomedical implant manufacturing method. Proc Inst Mech Eng Part E J Process Mech Eng. https://doi.org/10.1177/09544089221110423

    Article  Google Scholar 

  19. Hajializadeh F, Ince A (2019) Finite element–based numerical modeling framework for additive manufacturing process. Mater Des Process Commun 1(1):e28

    Article  Google Scholar 

  20. Amini M, Chang S (2018) Process monitoring of 3D metal printing in Industrial Scale. In: International manufacturing science and engineering conference. American Society of Mechanical Engineers, V001T01A035

  21. Sutton JT, Rajan K, Harper DP, Chmely SC (2018) Lignin-containing photoactive resins for 3D printing by stereolithography. ACS Appl Mater Interfaces 10(42):36456–36463

    Article  Google Scholar 

  22. McComb C, Meisel N, Murphy C, Simpson TW (2018) Predicting part mass, required support material, and build time via autoencoded voxel patterns. Int J Adv Manuf Technol 56:1–15

    Google Scholar 

  23. Yu KM, Tang Y, Chan LC (2018) Property estimate for inkjet based direct digital manufacturing. Comput Aided Des Appl 15(2):188–192

    Article  Google Scholar 

  24. Plocher J, Panesar A (2019) Review on design and structural optimisation in additive manufacturing: towards next-generation lightweight structures. Mater Des 183:108164

    Article  Google Scholar 

  25. Bhalodi D, Zalavadiya K, Gurrala PK (2019) Influence of temperature on polymer parts manufactured by fused deposition modeling process. J Braz Soc Mech Sci Eng 41:1–11

    Article  Google Scholar 

  26. Górski F, Wichniarek R, Kuczko W, Banaszewski J, Pabiszczak M (2018) Application of low-cost 3D printing for production of CT-based individual surgery supplies. In: World Congress on Medical Physics and Biomedical Engineering 2018: June 3–8 2018 Prague, Czech Republic, vol 1. Springer, pp 249–253

  27. Schuh G, Salmen M, Kelzenberg C, de Lange J (2018) Integration of tool making into agile product development using industry 4.0 technologies and additive manufacturing technologies. In: Portland International Conference on Management of Engineering and Technology (PICMET). IEEE, pp 1–9

  28. Hassen AA, Kirka MM (2018) Additive manufacturing: the rise of a technology and the need for quality control and inspection techniques. Mater Eval 76(4):438–453

    Google Scholar 

  29. Zongo F, Tahan A, Aidibe A, Brailovski V (2018) Intra-and inter-repeatability of profile deviations of an AlSi10Mg tooling component manufactured by laser powder bed fusion. J Manuf Mater Process 2(3):56

    Google Scholar 

  30. Khorram Niaki M, Nonino F (2018) Industries and applications. In: The management of additive manufacturing: enhancing business value, pp 37–66

  31. Ford SL (2014) Additive manufacturing technology: potential implications for US manufacturing competitiveness. Int Com Econ 6:40

    Google Scholar 

  32. Gardan J (2017) Method for characterization and enhancement of 3D printing by binder jetting applied to the textures quality. Assem Autom 37(2):162–169

    Article  Google Scholar 

  33. Väisänen AJ, Hyttinen M, Ylönen S, Alonen L (2019) Occupational exposure to gaseous and particulate contaminants originating from additive manufacturing of liquid, powdered, and filament plastic materials and related post-processes. J Occup Environ Hyg 16(3):258–271

    Article  Google Scholar 

  34. Górski F, Kuczko W, Wichniarek R, Hamrol A (2018) Mechanical properties of composite parts manufactured in FDM technology. Rapid Prototyp J 24:1281–1287

    Article  Google Scholar 

  35. Jeong J, Mitra A, Lee JBJ (2022) Atomized liquid metal droplet-enabled enhancement of sensing range and stability for ultrasensitive crack-based sensor. In: IEEE Sensors. IEEE, pp 01–04

  36. Wang X, Yushin G (2015) Chemical vapor deposition and atomic layer deposition for advanced lithium ion batteries and supercapacitors. Energy Environ Sci 8(7):1889–1904

    Article  Google Scholar 

  37. Lin L, Deng B, Sun J, Peng H, Liu Z (2018) Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene. Chem Rev 118(18):9281–9343

    Article  Google Scholar 

  38. Shi Z, Ci H, Yang X, Liu Z, Sun J (2022) Direct-chemical vapor deposition-enabled graphene for emerging energy storage: versatility, essentiality, and possibility. ACS Nano 16(8):11646–11675

    Article  Google Scholar 

  39. Lehmann K, Yurchenko O, Urban G (2016) Effect of the aromatic precursor flow rate on the morphology and properties of carbon nanostructures in plasma enhanced chemical vapor deposition. RSC Adv 6(39):32779–32788

    Article  Google Scholar 

  40. Liu H, You CY, Li J, Galligan PR, You J, Liu Z, Cai Y, Luo Z (2021) Synthesis of hexagonal boron nitrides by chemical vapor deposition and their use as single photon emitters. Nano Mater Sci 3(3):291–312

    Article  Google Scholar 

  41. Qi X, Ma Y, Liu S, Nie X, Zhang T, Wu Y, Peng W, Hu G (2023) Suppression of secondary electron emissions on the graphene-coated polyimide materials prepared by chemical vapor deposition. Coatings 13(10):1805

    Article  Google Scholar 

  42. Utke I, Swiderek P, Höflich K, Madajska K, Jurczyk J, Martinović P, Szymańska I (2022) Coordination and organometallic precursors of group 10 and 11: focused electron beam induced deposition of metals and insight gained from chemical vapour deposition, atomic layer deposition, and fundamental surface and gas phase studies. Coord Chem Rev 458:213851

    Article  Google Scholar 

  43. Blakeney KJ, Winter CH (2018) Atomic layer deposition of aluminum metal films using a thermally stable aluminum hydride reducing agent. Chem Mater 30(6):1844–1848

    Article  Google Scholar 

  44. Raiford JA, Oyakhire ST, Bent SF (2020) Applications of atomic layer deposition and chemical vapor deposition for perovskite solar cells. Energy Environ Sci 13(7):1997–2023

    Article  Google Scholar 

  45. Muñoz-Rojas D, Weber M, Vallée C, Crivello C, Sekkat A, Toldra-Reig F, Bechelany M (2022) Nanometric 3D printing of functional materials by atomic layer deposition. In: Advanced additive manufacturing, p 247

  46. Mahamood RM (2018) Laser metal deposition process of metals, alloys, and composite materials. Springer, Cham

    Book  Google Scholar 

  47. Mahamood R, Akinlabi ET (2015) Laser metal deposition of functionally graded Ti6Al4V/TiC. Mater Des 84:402–410

    Article  Google Scholar 

  48. Barragan De Los Rios GA, Ferreira R, Mariani FE, da Silva EJ, Coelho RT (2023) Study of the surface roughness of a remanufactured bimetallic AISI 1045 and 316L SS part obtained by hybrid manufacturing (DED/HSM). Int J Adv Manuf Technol 124(9):3185–3199

    Article  Google Scholar 

  49. Ribeiro KS, Mariani FE, Coelho RT (2020) A study of different deposition strategies in direct energy deposition (DED) processes. Procedia Manuf 48:663–670

    Article  Google Scholar 

  50. Leskelä RM (2002) Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films 409(1):138–146

    Article  Google Scholar 

  51. Leskelä M, Ritala M (2003) Atomic layer deposition chemistry: recent developments and future challenges. Angew Chem Int Ed 42(45):5548–5554

    Article  Google Scholar 

  52. Carcia P, McLean R, Groner M, Dameron A, George S (2009) Gas diffusion ultrabarriers on polymer substrates using Al2O3 atomic layer deposition and SiN plasma-enhanced chemical vapor deposition. J Appl Phys 106(2):023533

    Article  Google Scholar 

  53. Piszczek P, Radtke A (2018) Silver nanoparticles fabricated using chemical vapor deposition and atomic layer deposition techniques: properties, applications and perspectives: review. In: Noble precious metals, pp 187–213

  54. Sneh O, Clark-Phelps RB, Londergan AR, Winkler J, Seidel TE (2002) Thin film atomic layer deposition equipment for semiconductor processing. Thin Solid Films 402(1–2):248–261

    Article  Google Scholar 

  55. White BC, Garland A, Alberdi R, Boyce BL (2021) Interpenetrating lattices with enhanced mechanical functionality. Addit Manuf 38:101741

    Google Scholar 

  56. Mitra A, Xu K, Payne K, Choi JH, Lee J-B (2022) Fabrication of a multilayer X-band band-pass metasurface using liquid metal. IEEE Electron Device Lett 43(9):1535–1538

    Article  Google Scholar 

  57. Aghaee M, Verheyen J, Stevens AA, Kessels WM, Creatore M (2019) TiO2 thin film patterns prepared by chemical vapor deposition and atomic layer deposition using an atmospheric pressure microplasma printer. Plasma Process Polym 16(12):1900127

    Article  Google Scholar 

  58. Kaindl R, Homola T, Rastelli A, Schwarz A, Tarre A, Kopp D, Coclite AM, Görtler M, Meier B, Prettenthaler B (2022) Atomic layer deposition of oxide coatings on porous metal and polymer structures fabricated by additive manufacturing methods (laser-based powder bed fusion, material extrusion, material jetting). Surf Interfaces 34:102361

    Article  Google Scholar 

  59. Diskus M, Nilsen O, Fjellvåg H (2011) Thin films of cobalt oxide deposited on high aspect ratio supports by atomic layer deposition. Chem Vap Depos 17(4–6):135–140

    Article  Google Scholar 

  60. Moll A, Blandin J-J, Dendievel R, Gicquel E, Pons M, Jiménez C, Blanquet E, Mercier F (2021) Coupling powder bed additive manufacturing and vapor phase deposition methods for elaboration of coated 3D Ti-6Al-4V architectures with enhanced surface properties. Surf Coat Technol 415:127130

    Article  Google Scholar 

  61. Pung S-Y, Choy K-L, Hou X, Shan C (2008) Preferential growth of ZnO thin films by the atomic layer deposition technique. Nanotechnology 19(43):435609

    Article  Google Scholar 

  62. Elers KE, Saanila V, Soininen PJ, Li WM, Kostamo JT, Haukka S, Juhanoja J, Besling WF (2002) Diffusion barrier deposition on a copper surface by atomic layer deposition. Chem Vap Depos 8(4):149–153

    Article  Google Scholar 

  63. Hajializadeh F, Ince A (2021) Integration of artificial neural network with finite element analysis for residual stress prediction of direct metal deposition process. Mater Today Commun 27:102197

    Article  Google Scholar 

  64. Luo Z, Zhao Y (2018) A survey of finite element analysis of temperature and thermal stress fields in powder bed fusion Additive Manufacturing. Addit Manuf 21:318–332

    Google Scholar 

  65. Masmoudi A, Bolot R, Coddet C (2015) Investigation of the laser–powder–atmosphere interaction zone during the selective laser melting process. J Mater Process Technol 225:122–132

    Article  Google Scholar 

  66. Guo K, Qiao L, Huang Z, Anwer N, Cao Y (2022) A computational model of melt pool morphology for selective laser melting process. Int J Adv Manuf Technol 121(3–4):1651–1673

    Article  Google Scholar 

  67. Ansari SM (2022) On the selective laser melting based additive manufacturing of AlSi10Mg: the process parameter investigation through multiphysics simulation and experimental validation. J Alloys Compd 890:161873

    Article  Google Scholar 

  68. Meier C, Penny RW, Zou Y, Gibbs JS, Hart AJ (2017) Thermophysical phenomena in metal additive manufacturing by selective laser melting: fundamentals, modeling, simulation, and experimentation. Annu Rev Heat Transf 20:241–316

    Article  Google Scholar 

  69. Andreotta R, Ladani L, Brindley W (2017) Finite element simulation of laser additive melting and solidification of Inconel 718 with experimentally tested thermal properties. Finite Elem Anal Des 135:36–43

    Article  Google Scholar 

  70. Zeng K, Pal D, Teng C, Stucker BE (2015) Evaluations of effective thermal conductivity of support structures in selective laser melting. Addit Manuf 6:67–73

    Google Scholar 

  71. Xu X, Luo D, Guo C, Rong Q (2017) A custom-made temporomandibular joint prosthesis for fabrication by selective laser melting: finite element analysis. Med Eng Phys 46:1–11

    Article  Google Scholar 

  72. Le T-N, Lo Y-L, Lin Z-H (2020) Numerical simulation and experimental validation of melting and solidification process in selective laser melting of IN718 alloy. Addit Manuf 36:101519

    Google Scholar 

  73. Bremen S, Meiners W, Diatlov A (2012) Selective laser melting: a manufacturing technology for the future? Laser Tech J 9(2):33–38

    Article  Google Scholar 

  74. Xing W, Ouyang D, Li N, Liu L (2018) Insight into micro-cracking in 3D-printed Fe-based BMGs by selective laser melting. Intermetallics 103:101–106

    Article  Google Scholar 

  75. Cheng B, Chou K (2015) Melt pool evolution study in selective laser melting. In: 2015 International Solid Freeform Fabrication Symposium. University of Texas at Austin

  76. Ghasemi-Tabasi H, Jhabvala J, Boillat E, Ivas T, Drissi-Daoudi R, Logé RE (2020) An effective rule for translating optimal selective laser melting processing parameters from one material to another. Addit Manuf 36:101496

    Google Scholar 

  77. Baiges J, Chiumenti M, Moreira CA, Cervera M, Codina R (2021) An adaptive Finite Element strategy for the numerical simulation of additive manufacturing processes. Addit Manuf 37:101650

    Google Scholar 

  78. Vandecasteele M, Heylen R, Iuso D, Thanki A, Philips W, Witvrouw A, Verhees D, Booth BG (2023) Towards material and process agnostic features for the classification of pore types in metal additive manufacturing. Mater Des 227:111757

    Article  Google Scholar 

  79. Ashley S (1991) Rapid prototyping systems. Mech Eng 113(4):34

    Google Scholar 

  80. Cooper K (2001) Rapid prototyping technology. Marcel Dekker, Inc., New York

    Book  Google Scholar 

  81. Chen L, He Y, Yang Y, Niu S, Ren H (2017) The research status and development trend of additive manufacturing technology. Int J Adv Manuf Technol 89:3651–3660

    Article  Google Scholar 

  82. Mani M, Lyons KW, Gupta S (2014) Sustainability characterization for additive manufacturing. J Res Natl Inst Stand Technol 119:419

    Article  Google Scholar 

  83. Mohanavel V, Ali KA, Ranganathan K, Jeffrey JA, Ravikumar M, Rajkumar S (2021) The roles and applications of additive manufacturing in the aerospace and automobile sector. Mater Today Proc 47:405–409

    Article  Google Scholar 

  84. Gibson I, Rosen D, Stucker B, Khorasani M, Gibson I, Rosen D, Stucker B, Khorasani M (2021) Development of additive manufacturing technology. In: Additive manufacturing technologies, pp 23–51

  85. Srivastava M, Rathee S, Patel V, Kumar A, Koppad PG (2022) A review of various materials for additive manufacturing: recent trends and processing issues. J Mater Res Technol 21:2612–2641

    Article  Google Scholar 

  86. Davoodi E, Montazerian H, Mirhakimi AS, Zhianmanesh M, Ibhadode O, Shahabad SI, Esmaeilizadeh R, Sarikhani E, Toorandaz S, Sarabi SA (2022) Additively manufactured metallic biomaterials. Bioact Mater 15:214–249

    Google Scholar 

  87. Mostafaei A, Elliott AM, Barnes JE, Li F, Tan W, Cramer CL, Nandwana P, Chmielus M (2021) Binder jet 3D printing—process parameters, materials, properties, modeling, and challenges. Prog Mater Sci 119:100707

    Article  Google Scholar 

  88. Calignano F, Manfredi D, Ambrosio EP, Biamino S, Lombardi M, Atzeni E, Salmi A, Minetola P, Iuliano L, Fino P (2017) Overview on additive manufacturing technologies. Proc IEEE 105(4):593–612

    Article  Google Scholar 

  89. Yap CY, Chua CK, Dong ZL, Liu ZH, Zhang DQ, Loh LE, Sing SL (2015) Review of selective laser melting: materials and applications. Appl Phys Rev 2(4):041101

    Article  Google Scholar 

  90. Olakanmi EO, Cochrane RF, Dalgarno KW (2015) A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog Mater Sci 74:401–477

    Article  Google Scholar 

  91. Highley CB, Rodell CB, Burdick JA (2015) Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv Mater 27(34):5075–5079

    Article  Google Scholar 

  92. Mohamed OA, Masood S, Bhowmik JL (2015) Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf 3:42–53

    Article  Google Scholar 

  93. Heigel JC, Michaleris P, Reutzel EW (2015) Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti–6Al–4V. Addit Manuf 5:9–19

    Google Scholar 

  94. Tan LJ, Zhu W, Zhou K (2020) Recent progress on polymer materials for additive manufacturing. Adv Funct Mater 30(43):2003062

    Article  Google Scholar 

  95. Zargarian A, Esfahanian M, Kadkhodapour J, Ziaei-Rad S (2016) Numerical simulation of the fatigue behavior of additive manufactured titanium porous lattice structures. Mater Sci Eng C 60:339–347

    Article  Google Scholar 

  96. Jeon H, Lee J-W, Kim Y-D, Kim D-S, Yi K-S (2000) Study on the characteristics of TiN thin film deposited by the atomic layer chemical vapor deposition method. J Vac Sci Technol A Vac Surf Films 18(4):1595–1598

    Article  Google Scholar 

  97. Lee BH, Hwang JK, Nam JW, Lee SU, Kim JT, Koo SM, Baunemann A, Fischer RA, Sung MM (2009) Low-temperature atomic layer deposition of copper metal thin films: self-limiting surface reaction of copper dimethylamino-2-propoxide with diethylzinc. Angew Chem 121(25):4606–4609

    Article  Google Scholar 

  98. Shim JH, Chao C-C, Huang H, Prinz FB (2007) Atomic layer deposition of yttria-stabilized zirconia for solid oxide fuel cells. Chem Mater 19(15):3850–3854

    Article  Google Scholar 

  99. Wang Q, Wang X, Wang Z, Huang J, Wang Y (2013) PVDF membranes with simultaneously enhanced permeability and selectivity by breaking the tradeoff effect via atomic layer deposition of TiO2. J Membr Sci 442:57–64

    Article  Google Scholar 

  100. Gardan J (2017) Additive manufacturing technologies: state of the art and trends. In: Additive manufacturing handbook, pp 149–168

  101. Thiesse F, Wirth M, Kemper H-G, Moisa M, Morar D, Lasi H, Piller F, Buxmann P, Mortara L, Ford S (2015) Economic implications of additive manufacturing and the contribution of MIS. Bus Inf Syst Eng 57:139–148

    Article  Google Scholar 

  102. Turner BN, Strong R, Gold SA (2014) A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp J 20(3):192–204

    Article  Google Scholar 

  103. Hassanin H, Essa K, Elshaer A, Imbaby M, El-Mongy HH, El-Sayed TA (2021) Micro-fabrication of ceramics: additive manufacturing and conventional technologies. J Adv Ceram 10:1–27

    Article  Google Scholar 

  104. Zhang F, Saleh E, Vaithilingam J, Li Y, Tuck CJ, Hague RJ, Wildman RD, He Y (2019) Reactive material jetting of polyimide insulators for complex circuit board design. Addit Manuf 25:477–484

    Google Scholar 

  105. Elkaseer A, Chen KJ, Janhsen JC, Refle O, Hagenmeyer V, Scholz SG (2022) Material jetting for advanced applications: a state-of-the-art review, gaps and future directions. Addit Manuf 60:103270

    Google Scholar 

  106. Goyanes A, Fina F, Martorana A, Sedough D, Gaisford S, Basit AW (2017) Development of modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive manufacturing. Int J Pharm 527(1–2):21–30

    Article  Google Scholar 

  107. Sochol R, Sweet E, Glick C, Venkatesh S, Avetisyan A, Ekman K, Raulinaitis A, Tsai A, Wienkers A, Korner K (2016) 3D printed microfluidic circuitry via multijet-based additive manufacturing. Lab Chip 16(4):668–678

    Article  Google Scholar 

  108. Konda Gokuldoss P, Kolla S, Eckert J (2017) Additive manufacturing processes: Selective laser melting, electron beam melting and binder jetting—selection guidelines. Materials 10(6):672

    Article  Google Scholar 

  109. Tyagi S, Yadav A, Deshmukh S (2022) Review on mechanical characterization of 3D printed parts created using material jetting process. Mater Today Proc 51:1012–1016

    Article  Google Scholar 

  110. Jabari E, Liravi F, Davoodi E, Lin L, Toyserkani E (2020) High speed 3D material-jetting additive manufacturing of viscous graphene-based ink with high electrical conductivity. Addit Manuf 35:101330

    Google Scholar 

  111. Ahn D-G (2016) Direct metal additive manufacturing processes and their sustainable applications for green technology: a review. Int J Precis Eng Manuf Green Technol 3:381–395

    Article  Google Scholar 

  112. Garcia FL, Moris VAdS, Nunes AO, Silva DAL (2018) Environmental performance of additive manufacturing process—an overview. Rapid Prototyp J 24(7):1166–1177

    Article  Google Scholar 

  113. Brandt M (2017) The role of lasers in additive manufacturing. In: Laser additive manufacturing, pp 1–18

  114. Ziaee M, Crane NB (2019) Binder jetting: a review of process, materials, and methods. Addit Manuf 28:781–801

    Google Scholar 

  115. Dilip J, Miyanaji H, Lassell A, Starr TL, Stucker B (2017) A novel method to fabricate TiAl intermetallic alloy 3D parts using additive manufacturing. Defence Technol 13(2):72–76

    Article  Google Scholar 

  116. Bayat M, Dong W, Thorborg J, To AC, Hattel JH (2021) A review of multi-scale and multi-physics simulations of metal additive manufacturing processes with focus on modeling strategies. Addit Manuf 47:102278

    Google Scholar 

  117. Hashemi SM, Parvizi S, Baghbanijavid H, Tan AT, Nematollahi M, Ramazani A, Fang NX, Elahinia M (2022) Computational modelling of process–structure–property–performance relationships in metal additive manufacturing: a review. Int Mater Rev 67(1):1–46

    Article  Google Scholar 

  118. Smith J, Xiong W, Yan W, Lin S, Cheng P, Kafka OL, Wagner GJ, Cao J, Liu WK (2016) Linking process, structure, property, and performance for metal-based additive manufacturing: computational approaches with experimental support. Comput Mech 57:583–610

    Article  Google Scholar 

  119. Bandyopadhyay A, Traxel KD (2018) Invited review article: Metal-additive manufacturing—modeling strategies for application-optimized designs. Addit Manuf 22:758–774

    Google Scholar 

  120. Steuben JC, Birnbaum AJ, Michopoulos JG, Iliopoulos AP (2019) Enriched analytical solutions for additive manufacturing modeling and simulation. Addit Manuf 25:437–447

    Google Scholar 

  121. Layani M, Wang X, Magdassi S (2018) Novel materials for 3D printing by photopolymerization. Adv Mater 30(41):1706344

    Article  Google Scholar 

  122. Guttridge C, Shannon A, O’Sullivan A, O’Sullivan KJ, O’Sullivan LW (2022) Biocompatible 3D printing resins for medical applications: a review of marketed intended use, biocompatibility certification, and post-processing guidance. Ann 3D Printed Med 5:100044

    Article  Google Scholar 

  123. Ozdil D, Wimpenny I, Aydin H, Yang Y (2017) Biocompatibility of biodegradable medical polymers. In: Science and principles of biodegradable and bioresorbable medical polymers. Elsevier, pp 379–414

  124. Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng C 57:414–433

    Article  Google Scholar 

  125. Lakhdar Y, Tuck C, Binner J, Terry A, Goodridge R (2021) Additive manufacturing of advanced ceramic materials. Prog Mater Sci 116:100736

    Article  Google Scholar 

  126. Harun W, Kamariah M, Muhamad N, Ghani S, Ahmad F, Mohamed Z (2018) A review of powder additive manufacturing processes for metallic biomaterials. Powder Technol 327:128–151

    Article  Google Scholar 

  127. Bourell D, Kruth JP, Leu M, Levy G, Rosen D, Beese AM, Clare A (2017) Materials for additive manufacturing. CIRP Ann 66(2):659–681

    Article  Google Scholar 

  128. Cai Y, Wang Y, Burnett M (2020) Using augmented reality to build digital twin for reconfigurable additive manufacturing system. J Manuf Syst 56:598–604

    Article  Google Scholar 

  129. Wirth M, Thiesse F (2014) Shapeways and the 3D printing revolution. J Laser Appl 32:1–14

    Google Scholar 

  130. Torabi P, Petros M, Khoshnevis B (2014) Selective inhibition sintering: the process for consumer metal additive manufacturing. 3D Print Addit Manuf 1(3):152–155

    Article  Google Scholar 

  131. Parvin AJ Jr (2018) The relationship between a technology's diffusion rate (time) and its economical impact (Money). In: Proceedings of the international annual conference of the American Society for Engineering Management. American Society for Engineering Management (ASEM), pp 1–8

  132. Fernandez Vicente M, Calle W, Ferrandiz S, Conejero A (2016) Effect of infill parameters on tensile mechanical behavior in desktop 3D printing. 3D Print Addit Manuf 3(3):183–192

    Article  Google Scholar 

  133. Nazir A, Jeng J-Y (2020) A high-speed additive manufacturing approach for achieving high printing speed and accuracy. Proc Inst Mech Eng C J Mech Eng Sci 234(14):2741–2749

    Article  Google Scholar 

  134. Amini M, Chang SI (2018) MLCPM: a process monitoring framework for 3D metal printing in industrial scale. Comput Ind Eng 124:322–330

    Article  Google Scholar 

  135. Pandey A, Pradhan SK (2018) Investigations into complete liquefier dynamics and optimization of process parameters for fused deposition modeling. Mater Today Proc 5(5):12940–12955

    Article  Google Scholar 

  136. Holzmann P, Breitenecker RJ, Schwarz EJ (2019) Business model patterns for 3D printer manufacturers. J Manuf Technol Manag 31(6):1281–1300

    Article  Google Scholar 

  137. Leutenecker-Twelsiek B, Klahn C, Meboldt M (2016) Considering part orientation in design for additive manufacturing. Procedia CIRP 50:408–413

    Article  Google Scholar 

  138. Mehrpouya M, Dehghanghadikolaei A, Fotovvati B, Vosooghnia A, Emamian SS, Gisario A (2019) The potential of additive manufacturing in the smart factory industrial 4.0: a review. Appl Sci 9(18):3865

    Article  Google Scholar 

  139. Huang Y, Leu MC, Mazumder J, Donmez A (2015) Additive manufacturing: current state, future potential, gaps and needs, and recommendations. J Manuf Sci Eng 137(1):014001

    Article  Google Scholar 

  140. Ryan MJ, Eyers DR, Potter AT, Purvis L, Gosling J (2017) 3D printing the future: scenarios for supply chains reviewed. Int J Phys Distrib Logist Manag 47:992–1014

    Article  Google Scholar 

  141. Xu G, Gao L, Tao K, Wan S, Lin Y, Xiong A, Kang B, Zeng H (2017) Three-dimensional-printed upper limb prosthesis for a child with traumatic amputation of right wrist: a case report. Medicine 96(52):e9426

    Article  Google Scholar 

  142. Balaji D, Ranga J, Bhuvaneswari V, Arulmurugan B, Rajeshkumar L, Manimohan MP, Devi GR, Ramya G, Masi C (2022) Additive manufacturing for aerospace from inception to certification. J Nanomater 2022:1–18

    Google Scholar 

  143. Holzmann P, Schwarz EJ, Audretsch DB (2020) Understanding the determinants of novel technology adoption among teachers: the case of 3D printing. J Technol Transf 45:259–275

    Article  Google Scholar 

  144. Ghobadian A, Talavera I, Bhattacharya A, Kumar V, Garza-Reyes JA, O’regan N (2020) Examining legitimatisation of additive manufacturing in the interplay between innovation, lean manufacturing and sustainability. Int J Prod Econ 219:457–468

    Article  Google Scholar 

  145. Thampy V, Fong AY, Calta NP, Wang J, Martin AA, Depond PJ, Kiss AM, Guss G, Xing Q, Ott RT (2020) Subsurface cooling rates and microstructural response during laser based metal additive manufacturing. Sci Rep 10(1):1–9

    Article  Google Scholar 

  146. Downing D, Leary M, McMillan M, Alghamdi A, Brandt M (2020) Heat transfer in lattice structures during metal additive manufacturing: numerical exploration of temperature field evolution. Rapid Prototyp J 26(5):911–928

    Article  Google Scholar 

  147. Zhao C, Fezzaa K, Cunningham RW, Wen H, De Carlo F, Chen L, Rollett AD, Sun T (2017) Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. Sci Rep 7(1):3602

    Article  Google Scholar 

  148. Zumofen L, Beck C, Kirchheim A, Dennig H-J (2018) Quality related effects of the preheating temperature on laser melted high carbon content steels. In: Industrializing additive manufacturing-proceedings of additive manufacturing in products and applications-AMPA2017. Springer, pp 210–219.

  149. Parvin AJ Jr (2019) Technology abandonment and the time value of diffusion. In: IIE annual conference. Proceedings, Institute of Industrial and Systems Engineers (IISE), pp 1140–1145

  150. Almeida HA, Correia MS (2016) Sustainable impact evaluation of support structures in the production of extrusion-based parts. Handbook Sustain Addit Manuf 1:7–30

    Google Scholar 

  151. Malafaya BA, Marques M, Ferreira I, Machado M, Caldas G, Belinha J, Alves F, Jorge RN (2019) Additive manufacturing from a biomedical perspective. In: IEEE 6th Portuguese Meeting on Bioengineering (ENBENG). IEEE, pp 1–4

  152. Ma F, Zhang H, Hon K, Gong Q (2018) An optimization approach of selective laser sintering considering energy consumption and material cost. J Clean Prod 199:529–537

    Article  Google Scholar 

  153. Klahn C, Singer D, Meboldt M (2016) Design guidelines for additive manufactured snap-fit joints. Procedia CIRP 50:264–269

    Article  Google Scholar 

  154. Chiumenti M, Lin X, Cervera M, Lei W, Zheng Y, Huang W (2017) Numerical simulation and experimental calibration of additive manufacturing by blown powder technology. Part I: thermal analysis. Rapid Prototyp J 23(2):448–463

    Article  Google Scholar 

  155. Gandhi R, Maccioni L, Concli F (2022) Significant advancements in numerical simulation of fatigue behavior in metal additive manufacturing—review. Appl Sci 12(21):11132

    Article  Google Scholar 

  156. Gardan J (2016) Additive manufacturing technologies: state of the art and trends. Int J Prod Res 54(10):3118–3132

    Article  Google Scholar 

  157. Nan W, Pasha M, Ghadiri M (2020) Numerical simulation of particle flow and segregation during roller spreading process in additive manufacturing. Powder Technol 364:811–821

    Article  Google Scholar 

  158. Jamshidinia M, Kovacevic R (2015) The influence of heat accumulation on the surface roughness in powder-bed additive manufacturing. Surf Topogr Metrol Prop 3(1):014003

    Article  Google Scholar 

  159. Vitali A, Regazzoni D, Rizzi C, Colombo G (2017) Design and additive manufacturing of lower limb prosthetic socket. In: ASME International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, p V011T15A021

  160. Kumar S, Pandey SM (2022) The study of assessment parameters and performance measurement of cold spray technique: a futuristic approach towards additive manufacturing. Mapan 37(4):859–879

    Article  Google Scholar 

  161. Kumar D, Palanisamy S, Krishnan K, Alam MM (2023) Life cycle assessment of cold spray additive manufacturing and conventional machining of aluminum alloy flange. Metals 13(10):1684

    Article  Google Scholar 

  162. Li W, Cao C, Wang G, Wang F, Xu Y, Yang X (2019) ‘Cold spray+’as a new hybrid additive manufacturing technology: a literature review. Sci Technol Weld Join 24(5):420–445

    Article  Google Scholar 

  163. Vaz RF, Garfias A, Albaladejo V, Sanchez J, Cano IG (2023) A review of advances in cold spray additive manufacturing. Coatings 13(2):267

    Article  Google Scholar 

  164. Wu H, Liu S, Zhang Y, Liao H, Raoelison R-N, Deng S (2021) New process implementation to enhance cold spray-based additive manufacturing. J Therm Spray Technol 30(5):1284–1293

    Article  Google Scholar 

  165. Pattison J, Celotto S, Morgan R, Bray M, O’neill W (2007) Cold gas dynamic manufacturing: a non-thermal approach to freeform fabrication. Int J Mach Tools Manuf 47(3–4):627–634

    Article  Google Scholar 

  166. Zou Y (2021) Cold spray additive manufacturing: microstructure evolution and bonding features. Acc Mater Res 2(11):1071–1081

    Article  Google Scholar 

  167. Prashar G, Vasudev H (2021) A comprehensive review on sustainable cold spray additive manufacturing: State of the art, challenges and future challenges. J Clean Prod 310:127606

    Article  Google Scholar 

  168. Chen C, Xie Y, Yin S, Li W, Luo X, Xie X, Zhao R, Deng C, Wang J, Liao H (2023) Ductile and high strength Cu fabricated by solid-state cold spray additive manufacturing. J Mater Sci Technol 134:234–243

    Article  Google Scholar 

  169. Luzin V, Kirstein O, Zahiri S, Fraser D (2020) Residual stress buildup in Ti components produced by cold spray additive manufacturing (CSAM). J Therm Spray Technol 29:1498–1507

    Article  Google Scholar 

  170. Ashokkumar M, Thirumalaikumarasamy D, Sonar T, Deepak S, Vignesh P, Anbarasu M (2022) An overview of cold spray coating in additive manufacturing, component repairing and other engineering applications. J Mech Behav Mater 31(1):514–534

    Article  Google Scholar 

  171. Wu H, Xie X, Liu M, Verdy C, Zhang Y, Liao H, Deng S (2020) Stable layer-building strategy to enhance cold-spray-based additive manufacturing. Addit Manuf 35:101356

    Google Scholar 

  172. Jasthi BK, Kuca TS, Ellingsen MD, Ellis DL, Kandadai VA, Curtis TR (2023) Microstructure and mechanical properties of cold spray additive manufactured Cu–Cr–Nb and Fe–Ni–Cr alloys. Addit Manuf 61:103354

    Google Scholar 

  173. Bagherifard S, Guagliano M (2020) Fatigue performance of cold spray deposits: coating, repair and additive manufacturing cases. Int J Fatigue 139:105744

    Article  Google Scholar 

  174. Mohanty S, Gokuldoss Prashanth K (2023) Metallic coatings through additive manufacturing: a review. Materials 16(6):2325

    Article  Google Scholar 

  175. Nguyen HD, Pramanik A, Basak A, Dong Y, Prakash C, Debnath S, Shankar S, Jawahir I, Dixit S, Buddhi D (2022) A critical review on additive manufacturing of Ti–6Al–4V alloy: microstructure and mechanical properties. J Mater Res Technol 18:4641–4661

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gurbhej Singh or Hitesh Vasudev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Mehta, A. & Vasudev, H. Sustainability of additive manufacturing: a comprehensive review. Prog Addit Manuf (2024). https://doi.org/10.1007/s40964-024-00579-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40964-024-00579-z

Keywords

Navigation