Skip to main content

Advertisement

Log in

Natural fiber biocomposites via 4D printing technologies: a review of possibilities for agricultural bio-mulching and related sustainable applications

  • Review Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

Due to their perception as renewable and sustainable resources, natural fibres are becoming more popular as reinforcement in polymer matrix composites. The bulk of plant fibres is made up of lignin, hemicellulose, and cellulose with the balance composed of pectin, waxes, water-soluble organic components, and moisture (up to 20%). This study reviews and lists the existing studies conducted in 3D and 4D printing, their several techniques and material aspects. By utilizing the unique self-repairing capabilities of 4D printed polymers, which respond to factors such as temperature, humidity, osmotic pressure, magnetics, and biomolecules, a proposal is put forth to address the current unsustainable practices of agricultural mulching. Specifically, the proposal suggests the adoption of 4D printed bio mulch films that possess customized shape memory properties, serving as a sustainable alternative to conventional mulching practices. In line with the potential replacement with 4D printed bio mulch films, suitable bio-composites for the same are extracted and reviewed from literature along with their mechanical and microstructural properties, shape-memory behaviour, and their suitable 3D and 4D printing techniques in effective film synthesis and actuation programming. Moreover, several other agricultural applications that currently lack sustainability and where 4D printing can be deployed are discussed along with certain limitations and scope in developing 4D printed bio composite agro-sustainable structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

AM:

Additive manufacturing

4DP:

4D printing

3DP:

3D printing

SLA:

Stereolithographic

SMP:

Shape memory polymer

SMA:

Shape memory alloy

MF:

Microfiber

HBC:

Hygromorph bio-composites

SHS:

Selective heat sintering

SLS:

Selective laser sintering

DED:

Direct energy deposition

EBM:

Electron beam melting

CAD:

Computer-aided design

PA:

Polyamide

PLA:

Poly-lactic acid

ABS:

Acrylonitrile butadiene styrene

PU:

Polyurethane

PE:

Polyethylene

PP:

Polypropylene

NFC:

Natural fibre composite

PHA:

Polyhydroxyalkanoates

PTT:

Poly-tri-methylene terephthalate

PGA:

Polyglycolic acid

PBSA:

Polybutylene succinate-co-adipate

PCL:

Polycaprolactone

FDM:

Fusion deposition modelling

cFF:

Continuous flax fibre

FFF:

Fusion filament fabrication

DIW:

Direct ink writing

DLP:

Digital light processing

MFA:

Microfiber angle

NFRC:

Natural fibre reinforced composite

LDPE:

Low density polyethylene

HDPE:

High density polyethylene

PTT:

Polytrimethylene terephthalate

ROP:

Ring opening polymerization

FEA:

Finite element analysis

FFF:

Fused filament fabrication

NRFC:

Natural fibre reinforced composites

LCA:

Life cycle assessment

PHA:

Polyhydroxyalkanoates

References

  1. Jiang R, Kleer R, Jiang R, Kleer R, Piller FT (2017) Predicting the future of additive manufacturing: a delphi study on economic and societal implications of 3D printing for 2030 Techno-logical Forecasting & Social Change Predicting the future of additive manufacturing: a Delphi study on economic and societal implications of 3D printing for 2030. Technol Forecast Soc Chang

  2. Jackiewicz J (2017) Manufacturing of instructional aids for students at low cost by means of 3D printing. Mater Manuf Process 32(10):1116–1130. https://doi.org/10.1080/10426914.2016.1257135

    Article  Google Scholar 

  3. Sun MG, Rojdamrongratana D, Rosenblatt MI, Aakalu VK, Yu CQ (2018) 3D printing for low cost, rapid prototyping of eyelid crutches. Orbit. https://doi.org/10.1080/01676830.2018.1445760

    Article  Google Scholar 

  4. Summerscales J, Grove S (2014) Manufacturing methods for natural fibre composites. https://doi.org/10.1533/9780857099228.2.176

  5. Kumar SB, Jeevamalar J, Ramu P, Suresh G, Senthilnathan K (2020) Evaluation in 4D printing—a review. Mater Today. https://doi.org/10.1016/j.matpr.2020.07.335

    Article  Google Scholar 

  6. Mandon CA, Blum LJ, Marquette CA (2017) Adding biomolecular recognition capability to 3D printed objects: 4D printing. Proced Technol 27:1–2. https://doi.org/10.1016/j.protcy.2017.04.001

    Article  Google Scholar 

  7. Shao L, Zhao B, Zhang Q, Xing Y, Zhang K (2020) 4D printing composite with electrically controlled local deformation. Extreme Mech Lett 39:100793. https://doi.org/10.1016/j.eml.2020.100793

    Article  Google Scholar 

  8. Lezgy-Nazargah M, Saeidi-Aminabadi S, Yousefzadeh MA (2019) Design and fabrication of a new fiber-cement-piezoelectric composite sensor for measurement of inner stress in concrete structures. Arch Civ Mech Eng 19(2):405–416. https://doi.org/10.1016/j.acme.2018.12.007

    Article  Google Scholar 

  9. Agrawal H, Prieto J, Ramos C, Corchado JM (2016) Smart feeding in farming through IoT in silos. Adv Intell Syst Comp 530:355–366. https://doi.org/10.1007/978-3-319-47952-1_28

    Article  Google Scholar 

  10. Xu G, Yu W, Griffith D, Golmie N, Moulema P (2017) Towards integrating distributed energy resources and storage devices in smart grid. IEEE Internet Things J 4(1):192–204. https://doi.org/10.1109/JIOT.2016.2640563.Towards

    Article  Google Scholar 

  11. Wang Y, Li X (2020) Mechanics of materials an accurate finite element approach for programming 4D-printed self-morphing structures produced by fused deposition modeling. Mech Mater 151:103628. https://doi.org/10.1016/j.mechmat.2020.103628

    Article  Google Scholar 

  12. Alam M, Youssef M, Nehdi ML (2007) Utilizing shape memory alloys to enhance the performance and safety of civil infrastructure: a review. Can J Civ Eng 34(9):1075–1086

    Article  Google Scholar 

  13. Tibitts S (2013) The emergence of 4D printing, TED Talks

  14. Momeni F, Medhi Hassani S, Liu X, Ni J (2017) A review of 4D printing. Mater Des 122:42–79. https://doi.org/10.1016/j.matdes.2017.02.068

    Article  Google Scholar 

  15. Zhou J, Sheiko S (2016) Reversible shape-shifting in polymeric materials. J Polym Sci Part B Polym Phys 54:1365–1380. https://doi.org/10.1002/polb.24014

    Article  Google Scholar 

  16. Mitchell A, Lafont U, Hołyńska M, Semprimoschnig C (2018) Additive manufacturing- a review of 4D printing and future applications. Addit Manuf 24:606–626

    Google Scholar 

  17. Sun L, Huang W (2010) Mechanisms of the multi-shape memory effect and temperature memory effect in shape memory polymers. Soft Matter 6:4403. https://doi.org/10.1039/c0sm00236d

    Article  Google Scholar 

  18. Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H et al (2012) Stimulus- responsive shape memory materials: a review. Mater Des 33:577–640. https://doi.org/10.1016/j.matdes.2011.04.065

    Article  Google Scholar 

  19. Lee AY, An J, Chua CK (2017) Two-way 4D printing: a review on the reversibility of 3D-printed shape memory materials. Engineering 3:663–674. https://doi.org/10.1016/J.ENG.2017.05.014

    Article  Google Scholar 

  20. Pérez B, Nykvist H, Brøgger AF, Larsen MB, Falkeborg MF (2019) Impact of macronutrients printability and 3D-printer parameters on 3D-food printing: a review. Food Chem 287:249–257. https://doi.org/10.1016/j.foodchem.2019.02.090

    Article  Google Scholar 

  21. Chen Z, Li Z, Li J, Liu C, Liu C, Lao C, Fu Y, Liu C, Li Y, Wang P et al (2019) 3D printing of ceramics: a review. J Eur Ceram Soc 39:661–687. https://doi.org/10.1016/j.jeurceramsoc.2018.11.013

    Article  Google Scholar 

  22. Blok LG, Longana ML, Yu H, Woods BKS (2018) An investigation into 3D printing of fibre reinforced thermoplastic composites. Addit Manuf 22:176–186. https://doi.org/10.1016/j.addma.2018.04.039

    Article  Google Scholar 

  23. Zarek M, Mansour N, Shapira S, Cohn D (2017) 4D printing of shape memory-based personalized endoluminal medical devices. Macromol Rapid Commun 38:1600628. https://doi.org/10.1002/marc.201600628

    Article  Google Scholar 

  24. Pop MA, Croitoru C, Bedö T, Geamăn V, Radomir I, Mihaela C, Zaharia SM, Chicos LA, Milosan I (2019) Structural changes during 3D printing of bioderived and synthetic thermoplastic materials. J Appl Polym Sci 136:47382. https://doi.org/10.1002/app.47382

    Article  Google Scholar 

  25. Lin YH, Chuang TY, Chiang WH, Chen IWP, Wang K, Shie MY, Chen YW (2019) The synergistic effects of graphene-contained 3D-printed calcium silicate/poly-ε-caprolactone scaffolds promote FGFR-induced osteogenic/angiogenic differentiation of mesenchymal stem cells. Mater Sci Eng C Mater Biol Appl 104:109887. https://doi.org/10.1016/j.msec.2019.109887

    Article  Google Scholar 

  26. Garreta E, Oria R, Tarantino C, Pla-Roca M, Prado P, Fernández-Avilés F, Campistol JM, Samitier J, Montserrat N (2017) Tissue engineering by decellularization and 3D bioprinting. Mater Today 20:166–178. https://doi.org/10.1016/j.mattod.2016.12.005

    Article  Google Scholar 

  27. Munaz A, Vadivelu RK, St John J, Barton M, Kamble H, Nguyen NT (2016) Three-dimensional printing of biological matters. J Sci Adv Mater Dev 1:1–17. https://doi.org/10.1016/j.jsamd.2016.04.001

    Article  Google Scholar 

  28. An J, Teoh JEM, Suntornnond R, Chua CK (2015) Design and 3D printing of scaffolds and tissues. Engineering 1:261–268. https://doi.org/10.15302/J-ENG-2015061

    Article  Google Scholar 

  29. Wu YH, Chiu YC, Lin YH, Ho CC, Shie MY, Chen YW (2019) 3D-printed bioactive calcium silicate/poly-ε-caprolactone bioscaffolds modified with biomimetic extracellular matrices for bone regeneration. Int J Mol Sci 20:942. https://doi.org/10.3390/ijms20040942

    Article  Google Scholar 

  30. Huang KH, Chen YW, Wang CY, Lin YH, Wu YH, Shie MY, Lin CP (2018) Enhanced capability of BMP-2-loaded mesoporous calcium silicate scaffolds to induce odontogenic differentiation of human dental pulp cells. J Endod 44:1677–1685. https://doi.org/10.1016/j.joen.2018.08.008

    Article  Google Scholar 

  31. González-Henríquez CM, Sarabia-Vallejos MA, Rodriguez-Hernandez J (2019) Polymers for additivemanufacturing and 4D-printing: Materials, methodologies, and biomedical applications. Prog Polym Sci 94:57–116. https://doi.org/10.1016/j.progpolymsci.2019.03.001

    Article  Google Scholar 

  32. Bishop ES, Mostafa S, Pakvasa M, Luu HH, Lee MJ, Wolf JM, Ameer GA, He TC, Reid RR (2017) 3-Dbioprinting technologies in tissue engineering and regenerative medicine: Current and future trends. GenesDis 4:185–195. https://doi.org/10.1016/j.gendis.2017.10.002

    Article  Google Scholar 

  33. Wu W, DeConinck A, Lewis JA (2011) Omnidirectional printing of 3D microvascular networks. Adv Mater 23:H178–H183. https://doi.org/10.1002/adma.201004625

    Article  Google Scholar 

  34. Shie M-Y, Shen Y-F, Astuti SD, Lee AK-X, Lin S-H, Dwijaksara NLB, Chen Y-W (1864) Review of polymeric materials in 4D printing biomedical applications. Polymers 2019:11. https://doi.org/10.3390/polym11111864

    Article  Google Scholar 

  35. Gladman S, Matsumoto E, Nuzzo R, Mahadevan L, Lewis J (2016) Biomimetic 4D printing. Nat Mater 15:413–418. https://doi.org/10.1016/j.proeng.2018.01.056

    Article  Google Scholar 

  36. Mulakkal MC, Trask RS, Ting VP, Seddon AM (2018) Responsive cellulose-hydrogel composite ink for 4D printing. Mater Des 160:108–118. https://doi.org/10.1016/j.matdes.2018.09.009

    Article  Google Scholar 

  37. Baker A, Bates S, Llewellyn-Jones T, Valori L, Dicker M, Trask R (2019) 4D printing with robust thermoplastic polyurethane hydrogel-elastomer trilayers. Mater Des 167:107544. https://doi.org/10.1016/j.matdes.2018.107544

    Article  Google Scholar 

  38. Defoirdt N, Biswas S, De Vriese L, Tran LQN, Van Acker J, Ahsan Q et al (2010) Assessment of the tensile properties of coir, bamboo and jute fibre. Compos Part A Appl Sci Manuf 41:588–595. https://doi.org/10.1016/j.compositesa.2010.01.005

    Article  Google Scholar 

  39. Khoo Z, Teoh J, Liu Y, Chua C, Yang S, An J et al (2015) 3D printing of smart materials: a review on recent progresses in 4D printing. Virtual Phys Prototyp 10:103–122

    Article  Google Scholar 

  40. Fratzl P, Elbaum R, Burgert I (2008) Cellulose fibrils direct plant organ movements. Faraday Discuss 139:275–282

    Article  Google Scholar 

  41. Joffre T, Neagu RC, Bardage SL, Gamstedt EK (2014) Modelling of the hygroelastic behaviour of normal and compression wood tracheids. J Struct Biol 185:89–98. https://doi.org/10.1016/j.jsb.2013.10.014

    Article  Google Scholar 

  42. Le Duigou A, Correa D, Ueda M, Matsuzaki R, Castro M (2020) A review of 3D and 4D printing of natural fibre biocomposites. Mater Des. https://doi.org/10.1016/j.matdes.2020.108911

    Article  Google Scholar 

  43. Gladman S, Matsumoto E, Nuzzo R, Mahadevan L, Lewis J. Bio 4D printing. https://doi.org/10.1038/nmat4544

  44. Hollister SJ, Das S (2006) Selective laser sintering process optimization for layered manufacturing of CAPA®6501 polycaprolactone bone tissue engineering scaffolds. Ann Arbor. https://doi.org/10.1115/1.2162589

    Article  Google Scholar 

  45. Jafari D, Wits WW (2018) The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: a review. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2018.03.109

    Article  Google Scholar 

  46. Shim DS, Baek GY, Seo JS, Shin GY, Kim KP, Lee KY (2016) Effect of layer thickness setting on deposition characteristics in direct energy deposition (DED) process. Opt Laser Technol. https://doi.org/10.1016/j.optlastec.2016.07.001

    Article  Google Scholar 

  47. Murr LE, Gaytan SM, Ramirez DA, Martinez E, Hernandez J, Amato KN, Shindo PW, Medina FR, Wicker RB (2012) Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol. https://doi.org/10.1016/S1005-0302(12)60016-4

    Article  Google Scholar 

  48. Vyas C, Poologasundarampillai G, Hoyland J, Bartolo P (2017) 3D printing of biocomposites for osteochondral tissue engineering. Biomed Compos. https://doi.org/10.1016/B978-0-08-100752-5.00013-5

    Article  Google Scholar 

  49. Le Duigoua A, Castrob M (2017) Hygromorph BioComposites: effect of fibre content and interfacial strength on the actuation performances. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2017.02.004

    Article  Google Scholar 

  50. Rüggeberg M, Burgert I (2015) Bio-inspired wooden actuators for large scale applications. PLoS One 10:e0120718. https://doi.org/10.1371/journal.pone.0120718

    Article  Google Scholar 

  51. Reichert S, Menges A, Correa D (2015) Meteorosensitive architecture: biomimetic building skins based on materially embedded and hygroscopically enabled responsive-ness. Comput Des 60:50–69. https://doi.org/10.1016/j.cad.2014.02.010

    Article  Google Scholar 

  52. Holstov G, Farmer G, Bridgens B (2017) Sustainable materialisation of responsive architecture. Sustainability 9:1–20. https://doi.org/10.3390/su9030435

    Article  Google Scholar 

  53. Vailati C, Bachtiar E, Hass P, Burgert MRI (2017) An autonomous shading system based on coupled wood bilayer elements. Energy Build 158:1013–1022. https://doi.org/10.1016/j.enbuild.2017.10.042

    Article  Google Scholar 

  54. Guiducci L, Razghandi K, Bertinetti L, Turcaud S, Ruggeberg M, Weaver JC et al (2016) Honeycomb actuators inspired by the unfolding of ice plant seed capsules. PLoS ONE 11:1–21. https://doi.org/10.1371/journal.pone.0163506

    Article  Google Scholar 

  55. Lining Y, Jifei O, Guanyun W, Chin-Yi C, Wen W, Helene S, Hiroshi I (2015) Bio print: a liquid deposition printing system for natural actuators. 3D Print Addit Manuf 2:168–179. http://hdl.handle.net/1721.1/106153

  56. Chen X, Mahadevan L, Driks A, Sahin O (2014) Bacillus spores as a building blocks for stimuli-responsive materials and nanogenerators. Nat Nanotechnol Lett 9:137–141. https://doi.org/10.1038/nnano.2013.290

    Article  Google Scholar 

  57. Le Duigou A, Castro M (2017) Hygromorph bio composites: effect of fibre content and interfacial strength on the actuation performances. Ind Crop Prod. https://doi.org/10.1016/j.indcrop.2017.02.004

    Article  Google Scholar 

  58. Le Duigou A, Requile S, Beaugrand J, Scarpa F, Castro M (2017) Naturalfibres actuatorsfor smart bio-inspired hygromorph biocomposites. Smart Mater Struct. https://doi.org/10.1088/1361-665X/aa9410

    Article  Google Scholar 

  59. Le Duigou A, Castro M (2015) Moisture-induced self-shaping flax-reinforced polypropylene biocomposite actuator. Ind Crop Prod. https://doi.org/10.1016/j.indcrop.2015.03.077

    Article  Google Scholar 

  60. Le Duigou A, Castro M (2016) Evaluation of force generation mechanisms in natural, passive hydraulic actuators. Sci Rep 6:1–918105

    Article  Google Scholar 

  61. Le Duigoua A, Correa D, Ueda M, Matsuzaki R, Castro M (2020) A review of 3D and 4D printing of natural fibre biocomposites. Mater Des 194:108911. https://doi.org/10.1016/j.matdes.2020.108911

    Article  Google Scholar 

  62. Wang Q, Tian X, Huang L, Li D, Malakhov AV, Polilov AN (2018) Programmable morphing composites with embedded continuous fibers by 4D printing. Mater Des 155:404–413

    Article  Google Scholar 

  63. Rayate A, Jain P (2018) A review on 4D printing material composites and their applications. Mater Today Commun. https://doi.org/10.1016/j.matpr.2018.06.424

    Article  Google Scholar 

  64. Turcaud S, Guiducci L, Fratzl P, Brechet Y, Dunlop J (2011) An excursion into the design space of biomimetic architectured biphasic actuator. Int J Mater Res. https://doi.org/10.3139/146.110517

    Article  Google Scholar 

  65. Reyssat E, Mahadevan L (2009) Hygromorph: from pine cone to biomimetic bilayers. J RSoc 6:951–957. https://doi.org/10.1098/rsif.2009.0184

    Article  Google Scholar 

  66. Correa D, Menges A (2015) 3D printed hygroscopic programmable material systems. MRS Online Proc Libr Arch. https://doi.org/10.1557/opl.2015.644

    Article  Google Scholar 

  67. Le Duigou A, Castro M, Bevan R, Martin N (2016) 3D printing of wood fibre biocomposites: from mechanical to actuation functionality. Mater Des 97:347–408. https://doi.org/10.1016/j.matdes.2016.02.018

    Article  Google Scholar 

  68. Correa D, Papadopoulou A, Guberan C, Jhaveri N, Reichert S, Menges A et al (2015) 3D printing wood: programming hygroscopic material transformations, 3D Print Addit Manuf 2:106–116. http://hdl.handle.net/1721.1/104845

  69. Gladman E, Matsumoto R, Nuzzo L, Mahadevan J (2016) Lewis, Biomimetic 4-D printing. Nat Mater 15:413–418. https://doi.org/10.1016/j.proeng.2018.01.056

    Article  Google Scholar 

  70. Vazquez E, Gursoy B, Duarte J (2019) Designing for shape change: a case study on 3D printing composite materials for responsive architectures. Conference. https://doi.org/10.52842/conf.caadria.2019.2.391

    Article  Google Scholar 

  71. Hart LR, He Y, Ruiz-Cantu L, Zhou Z, Irvine D, Wildman R, Hayes W (2020) 3D and 4D printing of biomaterials and biocomposites, bioinspired composites, and related transformers. 3D and 4D Printing of Polymer Nanocomposite Materials. https://doi.org/10.1016/B978-0-12-816805-9.00015-6

  72. Murr LE, Gaytan SM Electron beam melting. https://doi.org/10.1016/B978-0-08-096532-1.01004-9

  73. Behl M, Lendlein A (2007) Shape-memory polymers. Mater Today. https://doi.org/10.1016/S1369-7021(07)70047-0

    Article  Google Scholar 

  74. Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science. https://doi.org/10.1126/science.1066102

    Article  Google Scholar 

  75. Alteheld A, Feng YK, Lendlein A (2005) A Biodegradable, amorphous copolyester-urethane networks having shape-memory properties. Angew Chem Int Ed. https://doi.org/10.1002/anie.200461360

    Article  Google Scholar 

  76. Van der Biest O et al (eds) Functionally Graded Materials VIII, Tech Trans Publications,- Degradable, multifunctional polymeric biomaterials with shape-memory. https://doi.org/10.4028/www.scientific.net/MSF.492-493.219

  77. Editors DE (2021) Global 4D printing market is expected to reach $489.2 million by 2027. Digital Engineering 247. https://www.digitalengineering247.com/article/global-4d-printing-market-is-expected-to-reach-489.2-million-by-2027

  78. Tibbits S (2014) 4D printing: multi-material shape change. Archit Des. https://doi.org/10.1002/ad.1710

    Article  Google Scholar 

  79. Vazquez E, Randall C, Duarte J (2019) Shape-changing architectural skins a review on materials, design and fabrication strategies and performance analysis. J Façade Des Eng. https://doi.org/10.7480/jfde.2019.2.3877

    Article  Google Scholar 

  80. Correa SP, Mylo M, Westermeier A, Bruchmann B, Menges A et al (2020) 4D pine scale: biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement. Philos Trans A Math Phys Eng Sci 378:20190445. https://doi.org/10.1098/rsta.2019.0445

    Article  Google Scholar 

  81. Cicala G, Cristaldi G, Recca G, Latteri A (2010) Composites based on natural fibre fabrics. https://doi.org/10.5772/10465

  82. Zarna C, Opedal MT, Echtermeyer AT, Chinga-Carrasco G (2021) Reinforcement ability of lignocellulosic components in biocomposites and their 3D printed applications—a review. Compos Part C 6:100171

    Google Scholar 

  83. Gauss C, Pickering KL, Muthe LP (2021) The use of cellulose in bio-derived formulations for 3D/4D printing: a review. Compos Part C 4:100113. https://doi.org/10.1016/j.jcomc.2021.100113. (ISSN 2666-6820)

    Article  Google Scholar 

  84. Bharath K, Basavarajappa S (2016) Applications of biocomposite materials based on natural fibers from renewable resources: a review. Sci Eng Compos Mater 23(2):123–133. https://doi.org/10.1515/secm-2014-0088

    Article  Google Scholar 

  85. Le Duigou A, Barbé A, Guillou E, Castro M (2019) 3D printing of continuous flax fibre reinforced biocomposites for structural applications. Mater Des 180:107884. https://doi.org/10.1016/j.matdes.2019.107884. (ISSN 0264-1275)

    Article  Google Scholar 

  86. Dissanayake NPJ, Summerscales J, Grove SM, Singh MM (2009) Energy use in the production of flax fiber for the reinforcement of composites. J Nat Fibers 6(4):331–346. https://doi.org/10.1080/15440470903345784

    Article  Google Scholar 

  87. Haleem A, Javaid M, Singh RP, Suman R (2021) Significant roles of 4D printing using smart materials in the field of manufacturing. Adv Ind Eng Polym Res 4(4):301–311. https://doi.org/10.1016/j.aiepr.2021.05.001. (ISSN 2542-5048)

    Article  Google Scholar 

  88. Shakoor A, Muhammad R, Thomas N, Silberschmidt V (2013) Mechanical and thermal characterisation of poly (l-lactide) composites reinforced with hemp fibres. J Phys 451:012010. https://doi.org/10.1088/1742-6596/451/1/012010

    Article  Google Scholar 

  89. Nugroho WT, Dong Y, Pramanik A, Leng J, Ramakrishna S (2021) Smart polyurethane composites for 3D or 4D printing: general-purpose use, sustainability and shape memory effect. Compos Part B. https://doi.org/10.1016/j.compositesb.2021.109104

    Article  Google Scholar 

  90. Balla VK, Kate KH, Satyavolu J, Singh P, Tadimeti JGD (2019) Additive manufacturing of natural fiber reinforced polymer composites: processing and prospects. Compos Part B 174:106956. https://doi.org/10.1016/j.compositesb.2019.106956. (ISSN 1359-8368)

    Article  Google Scholar 

  91. Sánchez-Safont EL, Aldureid A, Lagarón JM, Cabedo L, Gámez-Pérez J (2020) Study of the compatibilization effect of different reactive agents in PHB/natural fiber-based composites. Polymers 12(9):1967. https://doi.org/10.3390/polym12091967

    Article  Google Scholar 

  92. González-Sánchez C, Martínez-Aguirre A, Pérez-García B, Martínez-Urreaga J, de la Orden MU, Fonseca-Valero C (2014) Use of residual agricultural plastics and cellulose fibers for obtaining sustainable eco-composites prevents waste generation. J Clean Prod 83:228–237. https://doi.org/10.1016/j.jclepro.2014.07.061. (ISSN 0959-6526)

    Article  Google Scholar 

  93. Leist SK, Gao D, Chiou R, Zhou J (2017) Investigatingthe shape memory properties of 4D printed polylactic acid (PLA) and the concept of 4D printingonto nylon fabrics for the creation of smart textiles. Virtual Phys Prototyping. https://doi.org/10.1080/17452759.2017.1341815

    Article  Google Scholar 

  94. Guo R, Ren Z, Bi H, Xu M, Cai L (2019) Electrical and thermal conductivity of polylactic acid (PLA)-based biocomposites by incorporation of nano-graphite fabricated with fused deposition modeling. Polymers 11(3):549. https://doi.org/10.3390/polym11030549

    Article  Google Scholar 

  95. Mohan D, Teong ZK, Bakir AN, Sajab MS, Kaco H (2020) Extending cellulose-based polymers application in additive manufacturing technology: a review of recent approaches. Polymers 12(9):1876. https://doi.org/10.3390/polym12091876

    Article  Google Scholar 

  96. Bledzki AK, Jaszkiewicz A, Scherzer D (2009) Mechanical properties of PLA composites with man-made cellulose and abaca fibres. Compos Part A 40(4):404–412. https://doi.org/10.1016/j.compositesa.2009.01.002

    Article  Google Scholar 

  97. Deng H, Zhang C, Sattari K, Ling Y, Jheng-Wun Su, Yan Z, Lin J (2021) 4D printing elastic composites for strain-tailored multistable shape morphing. ACS Appl Mater Interfaces 13(11):12719–12725. https://doi.org/10.1021/acsami.0c17618

    Article  Google Scholar 

  98. Gupta N, Pradhan S, Jain A, Patel N (2021) Sustainable agriculture in India 2021—What we know and how to scale up. Council on Energy, Environment and Water, New Delhi

    Google Scholar 

  99. Kader MA, Singha A, Begum MA et al (2019) Mulching as water-saving technique in dryland agriculture: review article. Bull Natl Res Cent 43:147. https://doi.org/10.1186/s42269-019-0186-7

    Article  Google Scholar 

  100. Ahmed A, Arya S, Gupta V, Furukawa H, Khosla A (2021) 4D printing: fundamentals, materials, applications and challenges. Polymer 228:123926. https://doi.org/10.1016/j.polymer.2021.123926

    Article  Google Scholar 

  101. Tümer EH, Erbil HY (2021) Extrusion-based 3D printing applications of PLA composites: a review. Coatings 11:390. https://doi.org/10.3390/coatings11040390

    Article  Google Scholar 

  102. Yamamura S, Iwase E (2021) Hybrid hinge structure with elastic hinge on self-folding of 4D printing using a fused deposition modeling 3D printer. Mater Des 203:109605. https://doi.org/10.1016/j.matdes.2021.109605. (ISSN 0264-1275)

    Article  Google Scholar 

  103. Wang Y, Li X (2021) 4D-printed bi-material composite laminate for manufacturing reversible shape-change structures. Compos Part B 219:108918. https://doi.org/10.1016/j.compositesb.2021.108918. (ISSN 1359-8368)

    Article  Google Scholar 

  104. Subeshan B, Baddam Y, Asmatulu E (2021) Current progress of 4D-printing technology. Prog Addit Manuf 6:495–516. https://doi.org/10.1007/s40964-021-00182-6

    Article  Google Scholar 

  105. Maraveas C, Bayer IS, Bartzanas T (2022) 4D printing: perspectives for the production of sustainable plastics for agriculture. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2021.107785

    Article  Google Scholar 

  106. Gallos A, Paes G, Allais F, Beaugrand J (2017) Lignocellulosic fibers: a critical review of extrusion process for enhancement of the properties of natural fiber composites. R Soc Chem 7

  107. Beaugrand J, Berzin F (2013) Lignocellulosic fiber reinforced composites: influence of compounding conditions on defibrization and mechanical properties. J Appl Polym Sci 128:1227–1238

    Article  Google Scholar 

  108. Gamona G, Evon P, Rigal L (2013) Twin-screw extrusion impact on natural fibre morphology and material properties in poly (lactic acid) based biocomposites. Ind Crop Prod 46:173–185. https://doi.org/10.1016/j.indcrop.2013.01.026

    Article  Google Scholar 

  109. Coppola B, Garofalo E, Di Maio L, Scarfatoa P, Incarnato L (2018) Investigation on the use of PLA/hemp composites for the fused deposition modelling (FDM) 3D printing. AIP Conf Proc 1981

  110. Milosevic M, Stoof A, Pickering K (2017) Characterizing the mechanical properties of fused deposition modeling natural fiber recycled polypropylene composites. J Compos Sci 1:7

    Article  Google Scholar 

  111. Stoof D, Pickering K (2017) Fused deposition modeling of natural fibre/polylactic acid composites. J Compos Sci 1:8. https://doi.org/10.3390/jcs1010008

    Article  Google Scholar 

  112. Depuydt D, Balthazar M, Hendrickx K, Six W, Ferraris E, Desplentere F et al (2018) Production and characterization of bamboo and flax fiber reinforced polylactic acid filaments for fused deposition modeling (FDM). Polym Compos. https://doi.org/10.1002/pc.24971

    Article  Google Scholar 

  113. Zhao D, Cai X, Shou G, Gu Y, Wang P (2016) Study on the preparation of bamboo plastic composite intend for additive manufacturing. Key Eng Mater 667:250–258

    Article  Google Scholar 

  114. Navarrete M, Jorge I, Hidalgo-Salazar M, Escobar Nunez E, Rojas Arciniegas AJ (2017) Thermal and mechanical behavior of biocomposites using additive manufacturing. Int J Interact Des Manuf. https://doi.org/10.1007/s12008-017-0411-2

    Article  Google Scholar 

  115. Liu H, He H, Peng X, Huang B, Li J (2019) Three-dimensional printing of poly (lactic acid) bio-based composites with sugarcane bagasse fiber: effect of printing orientation on tensile performance. Polym Adv Technol 30:910–922

    Article  Google Scholar 

  116. Daver F, Peng K, Lee M, Brandt M, Shanks R (2018) Cork–PLA composite filaments for fused deposition modelling. Compos Sci Technol 168:230–237

    Article  Google Scholar 

  117. Safka J, Ackermann M, Bobeck J, Seidl M, Habr JBL (2016) Use of composite materials for FDM 3D print technology. Mater Sci Forum 862:174–181

    Article  Google Scholar 

  118. Kearns A (2017) Cotton cellulose fibers for 3D print material. Thesis Rep. https://repository.lib.ncsu.edu/bitstream/handle/1840.20/33730/etd.pdf?sequence=1&isAllowed=y

  119. Tao Y, Wang H, Li Z, Li P, Shi SQ (2017) Development and application of wood flour-filled polylactic acid composite filament for 3D printing. Materials (Basel) 10:1–6. https://doi.org/10.3390/ma10040339

    Article  Google Scholar 

  120. Filgueira D, Holmen S, Melbø JK, Moldes D, Echtermeyer AT, Chinga-Carrasco G (2017) Enzymatic-assisted modification of thermomechanical pulp fibers to improve the interfacial adhesion with poly (lactic acid) for 3D printing. ACS Sustain Chem Eng 5:9338–9346

    Article  Google Scholar 

  121. Tao Y, Pan L, Liu D, Li P (2019) A case study: mechanical modeling optimization of cellular structure fabricated using wood flour-filled polylactic acid composites with fused deposition modelling. Compos Struct 216:360–365

    Article  Google Scholar 

  122. Zander N, Park J, Boelter Z, Gillan M (2019) Recycled cellulose polypropylene composite feedstocks for material extrusion additive manufacturing. ACS Omega 4:13879–13888

    Article  Google Scholar 

  123. Girdis J, Gaudion L, Proust G, Loschke S, Dong A (2017) Rethinking timber: investigation into the use of waste macadamia nut shells for additive manufacturing. JOM 69:575–579

    Article  Google Scholar 

  124. Bourmaud A, Åkesson D, Beaugrand J, Le Duigou A, Skrifvars M, Baley C (2016) Recycling of l-poly-(lactide)-poly-(butylene-succinate)-flax biocomposite. Polym Degrad Stab 128:77–88. https://doi.org/10.1016/j.polymdegradstab.2016.03.018

    Article  Google Scholar 

  125. Bourmaud A, Baley C (2007) Investigations on the recycling of hemp and sisal fibre reinforced polypropylene composites. Polym Degrad Stab 92:1034–1045. https://doi.org/10.1016/j.polymdegradstab.2007.02.018

    Article  Google Scholar 

  126. Ramesh S, Kiran reddy S, Usha C, Naulakha NK, Adithyakumar C, Lohith KumarReddy M (2018) Advancements in the research of 4D printing—a review. IOP Conf Ser Mater Sci Eng 376:012123 (5023D and 4D printing of polymer nanocomposite materials)

    Article  Google Scholar 

  127. Wang S, Lee JM, Yeong WY (2015) Smart hydrogels for 3D bioprinting. Int J Bioprint 1:1–14

    Google Scholar 

  128. Dutta S, Cohn D (2017) Temperature and pH responsive 3D printed scaffolds. J Mater Chem B 5:9514–9521

    Article  Google Scholar 

  129. Han D, Farino C, Yang C, Scott T, Browe D, Choi W, Freeman JW, Lee H (2018) Soft robotic manipulation and locomotion with a 3D printed electroactive hydrogel. ACS Appl Mater Interfaces 10:17512–17518

    Article  Google Scholar 

  130. Xiong Z, Zheng C, Jin F, Wei R, Zhao Y, Gao X, Xia Y, Dong X, Zheng M, Duan X (2018) Magnetic-field-driven ultra-small 3D hydrogel microstructures: preparation of gel photoresist and two-photon polymerization microfabrication. Sens Actuators B Chem 274:541–550

    Article  Google Scholar 

  131. El Feninat F, Laroche G, Fiset M, Mantovani D (2002) Shape memory materials for biomedical applica-tions. Av Eng Mater 4:91–104

    Google Scholar 

  132. Kratz K, Voigt U, Lendlein A (2012) Temperature-memory effect of copolyesterurethanes and their application potential in minimally invasive medical technologies. Adv Funct Mater 22:3057–3065

    Article  Google Scholar 

  133. Yakacki CM, Shandas R, Lanning C, Rech B, Eckstein A, Gall K (2007) Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials 28:2255–2263

    Article  Google Scholar 

  134. Lendlein A, Kelch S (2002) Shape-memory effect from permanent shape. Angew Chem 41:2034–2057

    Article  Google Scholar 

  135. Zarek M, Mansour N, Shapira S, Cohn D (2017) 4D printing of shape memory-based personalized endo-luminal medical devices. Macromol Rapid Commun 38:1600628

    Article  Google Scholar 

  136. López-Valdeolivas M, Liu D, Broer DJ, Sánchez-Somolinos C (2018) 4D printed actuators with soft-robotic functions. Macromol Rapid Commun 39:3–9

    Article  Google Scholar 

  137. Ge Q, Sakhaei AH, Lee H, Dunn CK, Fang NX, Dunn ML (2016) Multimaterial 4D printing with tailorable shape memory polymers. Sci Rep 6:31110(1)-31110(11)

    Article  Google Scholar 

  138. Rafiee M, Farahani RD, Therriaul D (2020) Multi-material 3D and 4D printing: a survey. Adv Sci 7:1902307. https://doi.org/10.1002/advs.201902307

    Article  Google Scholar 

  139. Howard D, Buttery LD, Shakesheff KM, Roberts SJ (2008) Tissue engineering: strategies, stem cells and scaffolds. J Anat 213:66–72. https://doi.org/10.1111/j.1469-7580.2008.00878.x

    Article  Google Scholar 

  140. Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7:679–689. https://doi.org/10.1089/107632701753337645

    Article  Google Scholar 

  141. MacNeil S (2007) Progress and opportunities for tissue-engineered skin. Nature 445:874–880. https://doi.org/10.1038/nature05664

    Article  Google Scholar 

  142. Hendriks J, Riesle J, van Blitterswijk CA (2010) Co-culture in cartilage tissue engineering. J Tissue Eng Regen Med 1:170–178. https://doi.org/10.1002/term.19

    Article  Google Scholar 

  143. Mandrycky C, Wang Z, Kim K, Kim DH (2016) 3D bioprinting for engineering complex tissues. Bio-technol Adv 34:422–434. https://doi.org/10.1016/j.biotechadv.2015.12.011

    Article  Google Scholar 

  144. Melchels FPW, Domingos MAN, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW (2012) Additive manufacturing of tissues and organs. Prog Polym Sci 37:1079–1104. https://doi.org/10.1016/j.progpolymsci.2011.11.007

    Article  Google Scholar 

  145. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785. https://doi.org/10.1038/nbt.2958

    Article  Google Scholar 

  146. Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23:1169–1185. https://doi.org/10.1016/S0142-9612(01)00232-0

    Article  Google Scholar 

  147. Wang MO, Vorwald CE, Dreher ML, Mott EJ, Cheng M-H, Cinar A, Mehdizadeh H, Somo S, Dean D, Brey EM, Fisher JP (2015) Evaluating 3D-printed biomaterials as scaffolds for vascularized bone tissue engineering. Adv Mater 27:138–144

    Article  Google Scholar 

  148. Trombetta R, Inzana JA, Schwarz EM, Kates SL, Awad HA (2017) 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann Biomed Eng 45:23–44

    Article  Google Scholar 

  149. Jakus AE, Rutz AL, Jordan SW, Kannan A, Mitchell SM, Yun C, Koube KD, Yoo SC, Whiteley HE, Richter CP, Galiano RD, Hsu WK, Stock SR, Hsu EL, Shah RN (2016) Hyperelastic “bone”: a highly versatile, growth factor—free, osteoregenerative, scalable, and surgically friendly biomaterial. Sci Transl Med 8:358ra127(1)-358ra127(15)

    Article  Google Scholar 

  150. Khalyfa A, Vogt S, Weisser J, Grimm G, Rechtenbach A, Meyer W, Schnabelrauch M (2007) Development of a new calcium phosphate powder-binder system for the 3D printing of patient spe-cific implants. J Mater Sci Mater Med 18:909–916

    Article  Google Scholar 

  151. Duan B, Hockaday LA, Kang KH, Butcher JT (2013) 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A 1255–1264

  152. Jang J, Park HJ, Kim SW, Kim H, Park JY, Na SJ, Kim HJ, Park MN, Choi SH, Park SH, Kim SW, Kwon SM, Kim PJ, Cho DW (2017) 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials 112:264–274

    Article  Google Scholar 

  153. Faulkner-Jones A, Fyfe C, Cornelissen D-J, Gardner J, King J, Courtney A, Shu W (2015) Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication 7:044102

    Article  Google Scholar 

  154. Lee H, Cho D-W (2016) One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology. Lab Chip 16:2618–2625. https://doi.org/10.1039/C6LC00450D

    Article  Google Scholar 

  155. Parthasarathy J (2014) 3D modeling, custom implants and its future perspectives in craniofacial surgery. Ann Maxillofac Surg 4:9–18. https://doi.org/10.4103/2231-0746.133065

    Article  Google Scholar 

  156. Rengier F, Mehndiratta A, Von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, Giesel FL (2010) 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg 5:335–341

    Article  Google Scholar 

  157. Reiffel AJ, Kafka C, Hernandez KA, Popa S, Perez JL, Zhou S, Pramanik S, Brown BN, Ryu WS, Bonassar LJ, Spector JA (2013) High-fidelity tissue engineering of patient-specific auricles for reconstruction of pediatric microtia and other auricular deformities. PLoS ONE 8:e56506(1)-e56506(8)

    Article  Google Scholar 

  158. Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ (2010) Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet 376:440–448 (5013D and 4D printing of biomaterials and biocomposites, bioinspired composites, and related transformers)

    Article  Google Scholar 

  159. Lee CH, Rodeo SA, Fortier LA, Lu C, Erisken C, Mao JJ (2014) Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep. Sci Ence Transl Med 6:266ra171(1)-266ra171(21)

    Google Scholar 

  160. Morrison RJ, Hollister SJ, Niedner MF, Mahani MG, Park AH, Mehta DK, Ohye RG, Green GE (2015) Mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients. Sci Transl Med 7:285ra64(1)-285ra64(23)

    Article  Google Scholar 

  161. Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16:496–504. https://doi.org/10.1016/j.mattod.2013.11.017

    Article  Google Scholar 

  162. Probst FA, Hutmacher DW, M€uller DF, Machens H-G, Schantz J-T (2010) Rekonstruktion der Kal-varia durch ein pr€afabriziertes bioaktives Implantat TT—calvarial reconstruction by customized bio-active implant. Handchir Mikrochir Plast Chir 42:369–373

    Article  Google Scholar 

  163. Cohen A, Laviv A, Berman P, Nashef R, Abu-Tair J (2009) Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol 108:661–666

    Article  Google Scholar 

  164. Dawood A, Marti BM, Sauret-Jackson V, Darwood A (2015) 3D printing in dentistry. Br Dent J 219:521–529. https://doi.org/10.1038/sj.bdj.2015.914

    Article  Google Scholar 

  165. He C, Zhang M, Guo, (2020) 4D printing of mashed potato/purple sweet potato puree with spontaneous color change. Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2019.102250

    Article  Google Scholar 

  166. Chen C, Zhang M, Guo C, Chen H (2021) 4D printing of lotus root powder gel: color change induced by microwave. Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2021.102605

    Article  Google Scholar 

  167. Guo C, Zhang M, Devahastin S (2021) Color/aroma changes of 3D-printed buckwheat dough with yellow flesh peach as triggered by microwave heating of gelatin-gum Arabic complex coacervates. Food Hydrocoll 112:106358. https://doi.org/10.1016/j.foodhyd.2020.106358

    Article  Google Scholar 

  168. Ghazal AF, Zhang M, Bhandari B, Chen H (2021) Investigation on spontaneous 4D changes in color and flavor of healthy 3D printed food materials over time in response to external or internal pH stimulus. Food Res Int 142:110215. https://doi.org/10.1016/j.foodres.2021.110215

    Article  Google Scholar 

  169. Oral MO, Derossi A, Caporizzi R, Severini C (2021) Analyzing the most promising innovations in food printing. Programmable food texture and 4D foods. Future Foods 4:100093. https://doi.org/10.1016/j.fufo.2021.100093

    Article  Google Scholar 

  170. Ayrilmis N, Kariz M, Kwon J, Kuzman M (2019) Effect of printing layer thickness on water absorption and mechanical properties of 3D-printed wood/PLA composite materials. Int J Adv Manuf Technol 102:2195–2200

    Article  Google Scholar 

  171. Akhoundi B, Behravesh A, Saed A (2018) Improving mechanical properties of continuous fiber-reinforced thermoplastic composites produced by FDM 3D printer. J Reinf Plast Compos. https://doi.org/10.1177/0731684418807300

    Article  Google Scholar 

  172. Oksman K, Skrifvars M, Selin J-F (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:1317–1324. https://doi.org/10.1016/S0266-3538(03)00103-9

    Article  Google Scholar 

  173. Le Duigou A, Requile S, Beaugrand J, Scarpa F, Castro M (2017) Natural fibres actuators for smart bio-inspired hygromorph biocomposites. Smart Mater Struct. https://doi.org/10.1088/1361-665X/aa9410

    Article  Google Scholar 

  174. Ilyas RA, Sapuan SM, Harussani MM, Hakimi MYAY, Haziq MZM, Atikah MSN, Asyraf MRM, Ishak MR, Razman MR, Nurazzi NM et al (2021) PolylacticAcid (PLA) biocomposite: processing, additive manufacturing and advanced applications. Polymers 13:1326. https://doi.org/10.3390/polym13081326

    Article  Google Scholar 

  175. Le Duigou A, Chabaud G, Matsuzaki R, Castro M (2020) Tailoring the mechanical properties of 3D-printed continuous flax/PLA biocomposites by controlling the slicing parameters. Compos Part B 203:108474. https://doi.org/10.1016/j.compositesb.2020.108474. (ISSN 1359-8368)

    Article  Google Scholar 

  176. Chadha U, Abrol A, Vora NP, Tiwari A, Shanker SK, Selvaraj SK (2022) Performance evaluation of 3D printing technologies: a review, recent advances, current challenges, and future directions. Progress Additive Manuf. https://doi.org/10.1007/s40964-021-00257-4

    Article  Google Scholar 

  177. Chadha U, Selvaraj SK, Ashokan H, Hariharan SP, Paul MV, Venkatrangan V, Paramasivam V (2022) Complex nanomaterials in catalysis for chemically significant applications: from synthesis, hydrocarbon processing to renewable energy applications. Adv Mater Sci Eng. https://doi.org/10.1155/2022/1552334

    Article  Google Scholar 

  178. Dharnidharka M, Chadha U, Dasari LM, Paliwal A, Surya Y, Selvaraj SK (2021) Optical tomography in additive manufacturing: a review, processes, open problems, and new opportunities. Eur Phys J Plus 136(11):1–28. https://doi.org/10.1140/epjp/s13360-021-02108-1

    Article  Google Scholar 

  179. Yejun F (2021) 4D printing with bio-based polymers for adaptive wearable devices (version 1). Open Access Te Herenga Waka-Victoria University of Wellington. https://doi.org/10.26686/wgtn.14551254.v1

  180. Sikder A, Pearce AK, Parkinson SJ, Napier R, O’Reilly RK (2021) Recent trends in advanced polymer materials in agriculture related applications. ACS Appl Polym Mater. https://doi.org/10.1021/acsapm.0c00982

    Article  Google Scholar 

  181. Biodegradation of polylactic acid (PLA) fibers using different enzymes. https://doi.org/10.1007/s13233-014-2107-9

  182. Panda T, Gowrishankar BS (2005) Production and applications of esterases. Appl Microbiol Biotechnol 67:160–169. https://doi.org/10.1007/s00253-004-1840-y

    Article  Google Scholar 

  183. Mehrpouya M, Vahabi H, Barletta M, Laheurte P, Langlois V (2021) Additive manufacturing of polyhydroxyalkanoates (PHAs) biopolymers: materials, printing techniques, and applications. Mater Sci Eng. https://doi.org/10.1016/j.msec.2021.112216

    Article  Google Scholar 

  184. Alshahrani HA (2021) Review of 4D printing materials and reinforced composites: behaviors, applications and challenges. J Sci 6(2):167–185. https://doi.org/10.1016/j.jsamd.2021.03.006. (ISSN 2468-2179)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senthil Kumaran Selvaraj.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ram Kishore, S., Sridharan, A.P., Chadha, U. et al. Natural fiber biocomposites via 4D printing technologies: a review of possibilities for agricultural bio-mulching and related sustainable applications. Prog Addit Manuf 9, 37–67 (2024). https://doi.org/10.1007/s40964-023-00433-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40964-023-00433-8

Keywords

Navigation