Skip to main content
Log in

Breakthrough to the pragmatic evolution of direct ink writing: progression, challenges, and future

  • Review Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

The potentiality to construct 3D geometries by harnessing multifaceted materials for both conventional and unprecedented methodologies has become a paramount component of the additive manufacturing industry. The direct ink writing (DIW) process, also entitled “Robocasting,” is appertaining to the conventional casting process and facilitates the fabrication of complex architecture made up of peculiar materials, which are to be transformed into ink that procures shear-thinning and viscoelastic properties to be printed in patterns. Several types of research have been carried out on fabricating a variety of components with multifarious materials by employing direct ink writing, but very few articles are present to date pertaining to DIW process parameters and their influence on ink rheology. This review paper is devoted to explicating the DIW technique, appertaining to aggrandized emphasis on preponderate process parameters like nozzle diameter, extrusion rate, nozzle substrate distance, extrusion pressure, layer thickness, and their influence on ink rheology, ink flow, and also broad versatility of the techniques used for printing variety of materials. The delineation of the utilization of newly emerging technologies like machine learning for atomizing the control of process parameters and designing ink rheology models to incipient the accuracy and resolution of DIW is specified. Finally, the future potential of DIW is detailed and elucidated to address future challenges in bio-medical, electronics, and soft robotics applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cesarano J, Segalman R, Calvert P (1998) Robocasting provides moldless fabrication from slurry deposition. Mater Sci

  2. Zhang B, Chung SH, Barker S et al (2021) Direct ink writing of polycaprolactone/polyethylene oxide based 3D constructs. Progr Nat Sci Mater Int 31:180–191. https://doi.org/10.1016/j.pnsc.2020.10.001

    Article  Google Scholar 

  3. Shahzad A, Lazoglu I (2021) Direct ink writing (DIW) of structural and functional ceramics: recent achievements and future challenges. Compos B Eng 225:109249. https://doi.org/10.1016/j.compositesb.2021.109249

    Article  Google Scholar 

  4. Sonatkar J, Kandasubramanian B, Ismail SO (2022) 4D printing: pragmatic progression in biofabrication. Eur Polym J 169:111128. https://doi.org/10.1016/j.eurpolymj.2022.111128

    Article  Google Scholar 

  5. Prasad A, Kandasubramanian B (2019) Fused deposition processing polycaprolactone of composites for biomedical applications. Polym Plast Technol Mater 58:1365–1398. https://doi.org/10.1080/25740881.2018.1563117

    Article  Google Scholar 

  6. Lewis JA (2006) Direct ink writing of 3D functional materials. Adv Funct Mater 16:2193–2204. https://doi.org/10.1002/adfm.200600434

    Article  Google Scholar 

  7. Patil NA, Kandasubramanian B (2021) Functionalized polylysine biomaterials for advanced medical applications: a review. Eur Polym J 146:110248. https://doi.org/10.1016/j.eurpolymj.2020.110248

    Article  Google Scholar 

  8. Purushothaman AE, Thakur K, Kandasubramanian B (2020) Development of highly porous, electrostatic force assisted nanofiber fabrication for biological applications. Int J Polym Mater Polym Biomater 69:477–504. https://doi.org/10.1080/00914037.2019.1581197

    Article  Google Scholar 

  9. Chen Z, Li Z, Li J et al (2019) 3D printing of ceramics: a review. J Eur Ceram Soc 39:661–687. https://doi.org/10.1016/j.jeurceramsoc.2018.11.013

    Article  Google Scholar 

  10. Yadav R, Goud R, Dutta A et al (2018) Biomimicking of hierarchal molluscan shell structure via layer by layer 3D printing. Ind Eng Chem Res 57:10832–10840. https://doi.org/10.1021/acs.iecr.8b01738

    Article  Google Scholar 

  11. Subash A, Kandasubramanian B (2020) 4D printing of shape memory polymers. Eur Polym J 134:109771. https://doi.org/10.1016/j.eurpolymj.2020.109771

    Article  Google Scholar 

  12. Rastogi P, Kandasubramanian B (2019) Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication 11:042001. https://doi.org/10.1088/1758-5090/ab331e

    Article  Google Scholar 

  13. Manoj Prabhakar M, Saravanan AK, Haiter Lenin A et al (2021) A short review on 3D printing methods, process parameters and materials. Mater Today Proc 45:6108–6114. https://doi.org/10.1016/j.matpr.2020.10.225

    Article  Google Scholar 

  14. Coffigniez M, Gremillard L, Balvay S et al (2021) Direct-ink writing of strong and biocompatible titanium scaffolds with bimodal interconnected porosity. Addit Manuf 39:101859. https://doi.org/10.1016/j.addma.2021.101859

    Article  Google Scholar 

  15. M’Barki A, Bocquet L, Stevenson A (2017) Linking rheology and printability for dense and strong ceramics by direct ink writing. Sci Rep 7:6017. https://doi.org/10.1038/s41598-017-06115-0

    Article  Google Scholar 

  16. Balani SB, Ghaffar SH, Chougan M et al (2021) Processes and materials used for direct writing technologies: a review. Results Eng 11:100257. https://doi.org/10.1016/j.rineng.2021.100257

    Article  Google Scholar 

  17. Sunarso A, Yamamoto T, Mori N (2007) Numerical analysis of wall slip effects on flow of Newtonian and non-Newtonian fluids in macro and micro contraction channels. J Fluids Eng 129:23–30. https://doi.org/10.1115/1.2375127

    Article  Google Scholar 

  18. Švec O, Skoček J (2013) Simple Navier’s slip boundary condition for the non-Newtonian lattice Boltzmann fluid dynamics solver. J Nonnewton Fluid Mech 199:61–69. https://doi.org/10.1016/j.jnnfm.2013.06.003

    Article  Google Scholar 

  19. Malda J, Visser J, Melchels FP et al (2013) 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 25:5011–5028. https://doi.org/10.1002/adma.201302042

    Article  Google Scholar 

  20. Rocha VG, Saiz E, Tirichenko IS, García-Tuñón E (2020) Direct ink writing advances in multi-material structures for a sustainable future. J Mater Chem A Mater 8:15646–15657. https://doi.org/10.1039/D0TA04181E

    Article  Google Scholar 

  21. Nadernezhad A, Khani N, Skvortsov GA et al (2016) Multifunctional 3D printing of heterogeneous hydrogel structures. Sci Rep 6:33178. https://doi.org/10.1038/srep33178

    Article  Google Scholar 

  22. Zhang X, Jia X, Wang X (2020) Direct ink writing of polymers and their composites, and related applications. Structure and properties of additive manufactured polymer components. Elsevier, Amsterdam, pp 391–408

    Chapter  Google Scholar 

  23. Ghosh S, Parker ST, Wang X et al (2008) Direct-write assembly of microperiodic silk fibroin scaffolds for tissue engineering applications. Adv Funct Mater 18:1883–1889. https://doi.org/10.1002/adfm.200800040

    Article  Google Scholar 

  24. García-Tuñon E, Barg S, Franco J et al (2015) Printing in three dimensions with graphene. Adv Mater 27:1688–1693. https://doi.org/10.1002/adma.201405046

    Article  Google Scholar 

  25. Tuttle BA, Smay JE, Cesarano J et al (2001) Robocast Pb(Zr0.95Ti0.05)O3 ceramic monoliths and composites. J Am Ceram Soc 84:872–874. https://doi.org/10.1111/j.1151-2916.2001.tb00756.x

    Article  Google Scholar 

  26. Deliormanlı AM, Rahaman MN (2012) Direct-write assembly of silicate and borate bioactive glass scaffolds for bone repair. J Eur Ceram Soc 32:3637–3646. https://doi.org/10.1016/j.jeurceramsoc.2012.05.005

    Article  Google Scholar 

  27. Barry Carter C, Grant Norton M (2007) Ceramic materials—science and engineering. Springer, New York

    Google Scholar 

  28. Solís Pinargote NW, Smirnov A, Peretyagin N et al (2020) Direct ink writing technology (3D printing) of graphene-based ceramic nanocomposites: a review. Nanomaterials 10:1300. https://doi.org/10.3390/nano10071300

    Article  Google Scholar 

  29. Siqueira G, Kokkinis D, Libanori R et al (2017) Cellulose nanocrystal inks for 3D printing of textured cellular architectures. Adv Funct Mater 27:1604619. https://doi.org/10.1002/adfm.201604619

    Article  Google Scholar 

  30. You X, Yang J, Huang K et al (2019) Multifunctional silicon carbide matrix composites optimized by three-dimensional graphene scaffolds. Carbon N Y 155:215–222. https://doi.org/10.1016/j.carbon.2019.08.080

    Article  Google Scholar 

  31. Chen F, Yang C, An Z et al (2022) Direct-ink-writing of multistage-pore structured energy collector with ultrahigh ceramic content and toughness. Mater Des 217:110652. https://doi.org/10.1016/j.matdes.2022.110652

    Article  Google Scholar 

  32. Li W, Armani A, McMillen D et al (2020) Additive manufacturing of zirconia parts with organic sacrificial supports. Int J Appl Ceram Technol 17:1544–1553. https://doi.org/10.1111/ijac.13520

    Article  Google Scholar 

  33. Nan B, Gołębiewski P, Buczyński R et al (2020) Direct ink writing glass: a preliminary step for optical application. Materials 13:1636. https://doi.org/10.3390/ma13071636

    Article  Google Scholar 

  34. Tubío CR, Rama A, Gómez M et al (2018) 3D-printed graphene-Al2O3 composites with complex mesoscale architecture. Ceram Int 44:5760–5767. https://doi.org/10.1016/j.ceramint.2017.12.234

    Article  Google Scholar 

  35. Nguyen DT, Meyers C, Yee TD et al (2017) 3D-printed transparent glass. Adv Mater 29:1701181. https://doi.org/10.1002/adma.201701181

    Article  Google Scholar 

  36. Cheng Y, Chan KH, Wang X-Q et al (2019) Direct-ink-write 3D printing of hydrogels into biomimetic soft robots. ACS Nano 13:13176–13184. https://doi.org/10.1021/acsnano.9b06144

    Article  Google Scholar 

  37. Peng J, Lin TL, Calvert P (1999) Orientation effects in freeformed short-fiber composites. Compos Part A Appl Sci Manuf 30:133–138. https://doi.org/10.1016/S1359-835X(98)00110-9

    Article  Google Scholar 

  38. Franchin G, Wahl L, Colombo P (2017) Direct ink writing of ceramic matrix composite structures. J Am Ceram Soc 100:4397–4401. https://doi.org/10.1111/jace.15045

    Article  Google Scholar 

  39. Barry RA, Shepherd RF, Hanson JN et al (2009) Direct-write assembly of 3D hydrogel scaffolds for guided cell growth. Adv Mater 21:2407–2410. https://doi.org/10.1002/adma.200803702

    Article  Google Scholar 

  40. Wimmer MG, Compton BG (2022) Semi-solid epoxy feedstocks with high glass transition temperature for material extrusion additive manufacturing. Addit Manuf 54:102725. https://doi.org/10.1016/j.addma.2022.102725

    Article  Google Scholar 

  41. Wu J, Yuan C, Ding Z et al (2016) Multi-shape active composites by 3D printing of digital shape memory polymers. Sci Rep 6:24224. https://doi.org/10.1038/srep24224

    Article  Google Scholar 

  42. Darabi MA, Khosrozadeh A, Mbeleck R et al (2017) Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability. Adv Mater 29:1700533. https://doi.org/10.1002/adma.201700533

    Article  Google Scholar 

  43. Dominguez-Alfaro A, Gabirondo E, Alegret N et al (2021) 3D printable conducting and biocompatible PEDOT-graft -PLA copolymers by direct ink writing. Macromol Rapid Commun 42:2100100. https://doi.org/10.1002/marc.202100100

    Article  Google Scholar 

  44. Hirt L, Reiser A, Spolenak R, Zambelli T (2017) Additive manufacturing of metal structures at the micrometer scale. Adv Mater 29:1604211. https://doi.org/10.1002/adma.201604211

    Article  Google Scholar 

  45. Bonada J, Xuriguera E, Calvo L et al (2019) Analysis of printing parameters for metal additive manufactured parts through direct ink writing process. Procedia Manuf 41:666–673. https://doi.org/10.1016/j.promfg.2019.09.056

    Article  Google Scholar 

  46. Wang H, Chen C, Yang F et al (2021) Direct ink writing of metal parts with curing by UV light irradiation. Mater Today Commun 26:102037. https://doi.org/10.1016/j.mtcomm.2021.102037

    Article  Google Scholar 

  47. Xu C, Quinn B, Lebel LL et al (2019) Multi-material direct ink writing (DIW) for complex 3D metallic structures with removable supports. ACS Appl Mater Interfaces 11:8499–8506. https://doi.org/10.1021/acsami.8b19986

    Article  Google Scholar 

  48. Xu C, Wu Q, L’Espérance G et al (2018) Environment-friendly and reusable ink for 3D printing of metallic structures. Mater Des 160:262–269. https://doi.org/10.1016/j.matdes.2018.09.024

    Article  Google Scholar 

  49. Velásquez-García LF, Kornbluth Y (2021) Biomedical applications of metal 3D printing. Annu Rev Biomed Eng 23:307–338. https://doi.org/10.1146/annurev-bioeng-082020-032402

    Article  Google Scholar 

  50. Liu C, Cheng X, Li B et al (2017) Fabrication and characterization of 3D-printed highly-porous 3D LiFePO4 electrodes by low temperature direct writing process. Materials 10:934. https://doi.org/10.3390/ma10080934

    Article  Google Scholar 

  51. Kim H, Renteria-Marquez A, Islam MD et al (2019) Fabrication of bulk piezoelectric and dielectric BaTiO 3 ceramics using paste extrusion 3D printing technique. J Am Ceram Soc 102:3685–3694. https://doi.org/10.1111/jace.16242

    Article  Google Scholar 

  52. Fekiri C, Kim HC, Lee IH (2020) 3D-printable carbon nanotubes-based composite for flexible piezoresistive sensors. Materials 13:5482. https://doi.org/10.3390/ma13235482

    Article  Google Scholar 

  53. Gannarapu A, Gozen BA (2019) Micro-extrusion-based additive manufacturing with liquid metals and alloys: flow and deposition driven by oxide skin mechanics. Extreme Mech Lett 33:100554. https://doi.org/10.1016/j.eml.2019.100554

    Article  Google Scholar 

  54. Jang S, Boddorff A, Jang DJ et al (2021) Effect of material extrusion process parameters on filament geometry and inter-filament voids in as-fabricated high solids loaded polymer composites. Addit Manuf 47:102313. https://doi.org/10.1016/j.addma.2021.102313

    Article  Google Scholar 

  55. Papon EA, Haque A (2018) Tensile properties, void contents, dispersion and fracture behaviour of 3D printed carbon nanofiber reinforced composites. J Reinf Plast Compos 37:381–395. https://doi.org/10.1177/0731684417750477

    Article  Google Scholar 

  56. Shao Y, Han R, Quan X, Niu K (2021) Study on ink flow of silicone rubber for direct ink writing. J Appl Polym Sci 138:50819. https://doi.org/10.1002/app.50819

    Article  Google Scholar 

  57. Paz R, Moriche R, Monzón M, García J (2020) Influence of manufacturing parameters and post processing on the electrical conductivity of extrusion-based 3D printed nanocomposite parts. Polymers (Basel) 12:733. https://doi.org/10.3390/polym12040733

    Article  Google Scholar 

  58. Ahammed SR, Praveen AS (2021) Optimization parameters effects on electrical conductivity of 3D printed circuits fabricated by direct ink writing method using functionalized multiwalled carbon nanotubes and polyvinyl alcohol conductive ink. Int J Simul Multi Design Optim 12:7. https://doi.org/10.1051/smdo/2021007

    Article  Google Scholar 

  59. Dieter GE (1961) Mechanical metallurgy. McGraw-Hill, New York

    Book  Google Scholar 

  60. Brandao J, Spieth E, Lekakou C (1996) Extrusion of polypropylene. Part I: melt rheology. Polym Eng Sci 36:49–55. https://doi.org/10.1002/pen.10383

    Article  Google Scholar 

  61. Wu J, Aage N, Westermann R, Sigmund O (2018) Infill optimization for additive manufacturing—approaching bone-like porous structures. IEEE Trans Vis Comput Graph 24:1127–1140. https://doi.org/10.1109/TVCG.2017.2655523

    Article  Google Scholar 

  62. Wu W, Hansen CJ, Aragón AM et al (2010) Direct-write assembly of biomimetic microvascular networks for efficient fluid transport. Soft Matter 6:739–742. https://doi.org/10.1039/B918436H

    Article  Google Scholar 

  63. Yuk H, Zhao X (2018) A new 3D printing strategy by harnessing deformation, instability, and fracture of viscoelastic inks. Adv Mater 30:1704028. https://doi.org/10.1002/adma.201704028

    Article  Google Scholar 

  64. Xu K, Li D, Shang E, Liu Y (2022) A heating-assisted direct ink writing method for preparation of PDMS cellular structure with high manufacturing fidelity. Polymers (Basel) 14:1323. https://doi.org/10.3390/polym14071323

    Article  Google Scholar 

  65. Zhang H, Moon SK (2021) Reviews on machine learning approaches for process optimization in noncontact direct ink writing. ACS Appl Mater Interfaces 13:53323–53345. https://doi.org/10.1021/acsami.1c04544

    Article  Google Scholar 

  66. Ball AK, Das R, Roy SS et al (2020) Modeling of EHD inkjet printing performance using soft computing-based approaches. Soft Comput 24:571–589. https://doi.org/10.1007/s00500-019-04202-0

    Article  Google Scholar 

  67. Shi J, Wu B, Song B et al (2018) Learning-based cell injection control for precise drop-on-demand cell printing. Ann Biomed Eng 46:1267–1279. https://doi.org/10.1007/s10439-018-2054-2

    Article  Google Scholar 

  68. He H, Yang Y, Pan Y (2019) Machine learning for continuous liquid interface production: printing speed modelling. J Manuf Syst 50:236–246. https://doi.org/10.1016/j.jmsy.2019.01.004

    Article  Google Scholar 

  69. Jin Z, Zhang Z, Gu GX (2019) Autonomous in-situ correction of fused deposition modeling printers using computer vision and deep learning. Manuf Lett 22:11–15. https://doi.org/10.1016/j.mfglet.2019.09.005

    Article  Google Scholar 

  70. Lewis JA, Smay JE, Stuecker J, Cesarano J (2006) Direct ink writing of three-dimensional ceramic structures. J Am Ceram Soc 89:3599–3609. https://doi.org/10.1111/j.1551-2916.2006.01382.x

    Article  Google Scholar 

  71. Smay JE, Cesarano J, Lewis JA (2002) Colloidal inks for directed assembly of 3-D periodic structures. Langmuir 18:5429–5437. https://doi.org/10.1021/la0257135

    Article  Google Scholar 

  72. Haake A, Tutika R, Schloer GM et al (2022) On-demand programming of liquid metal-composite microstructures through direct ink write 3D printing. Adv Mater 34:2200182. https://doi.org/10.1002/adma.202200182

    Article  Google Scholar 

  73. Buscall R, McGowan JI, Morton-Jones AJ (1993) The rheology of concentrated dispersions of weakly attracting colloidal particles with and without wall slip. J Rheol (N Y N Y) 37:621–641. https://doi.org/10.1122/1.550387

    Article  Google Scholar 

  74. Kalyon DM, Yaras P, Aral B, Yilmazer U (1993) Rheological behavior of a concentrated suspension: a solid rocket fuel simulant. J Rheol (N Y N Y) 37:35–53. https://doi.org/10.1122/1.550435

    Article  Google Scholar 

  75. Lee J, Oh SJ, An SH et al (2020) Machine learning-based design strategy for 3D printable bioink: elastic modulus and yield stress determine printability. Biofabrication 12:035018. https://doi.org/10.1088/1758-5090/ab8707

    Article  Google Scholar 

  76. Woods H, Boddorff A, Ewaldz E et al (2020) Rheological considerations for binder development in direct ink writing of energetic materials. Propellants Explos Pyrotech 45:26–35. https://doi.org/10.1002/prep.201900159

    Article  Google Scholar 

  77. Triacca A, Pitzanti G, Mathew E et al (2022) Stereolithography 3D printed implants: a preliminary investigation as potential local drug delivery systems to the ear. Int J Pharm 616:121529. https://doi.org/10.1016/j.ijpharm.2022.121529

    Article  Google Scholar 

  78. Zhou R, Liu H, Wang H (2022) Modeling and simulation of metal selective laser melting process: a critical review. Int J Adv Manuf Technol 121:5693–5706. https://doi.org/10.1007/s00170-022-09721-z

    Article  Google Scholar 

  79. Lin K, Sheikh R, Romanazzo S, Roohani I (2019) 3D printing of bioceramic scaffolds—barriers to the clinical translation: from promise to reality, and future perspectives. Materials 12:2660. https://doi.org/10.3390/ma12172660

    Article  Google Scholar 

  80. Tsang ACH, Zhang J, Hui KN et al (2022) Recent development and applications of advanced materials via direct ink writing. Adv Mater Technol 7:2101358. https://doi.org/10.1002/admt.202101358

    Article  Google Scholar 

  81. Pandey H, Mohol SS, Kandi R (2022) 4D printing of tracheal scaffold using shape-memory polymer composite. Mater Lett 329:133238. https://doi.org/10.1016/j.matlet.2022.133238

    Article  Google Scholar 

  82. Nocheseda CJC, Liza FP, Collera AKM et al (2021) 3D printing of metals using biodegradable cellulose hydrogel inks. Addit Manuf 48:102380. https://doi.org/10.1016/j.addma.2021.102380

    Article  Google Scholar 

  83. Sonatkar J, Kandasubramanian B (2021) Bioactive glass with biocompatible polymers for bone applications. Eur Polym J 160:110801. https://doi.org/10.1016/j.eurpolymj.2021.110801

    Article  Google Scholar 

  84. Fu Q, Saiz E, Tomsia AP (2011) Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Acta Biomater 7:3547–3554. https://doi.org/10.1016/j.actbio.2011.06.030

    Article  Google Scholar 

  85. Sriphutkiat Y, Kasetsirikul S, Ketpun D, Zhou Y (2019) Cell alignment and accumulation using acoustic nozzle for bioprinting. Sci Rep 9:17774. https://doi.org/10.1038/s41598-019-54330-8

    Article  Google Scholar 

  86. O’Reilly CS, Elbadawi M, Desai N et al (2021) Machine learning and machine vision accelerate 3D printed orodispersible film development. Pharmaceutics 13:2187. https://doi.org/10.3390/pharmaceutics13122187

    Article  Google Scholar 

  87. L’heureux N, Pâquet S, Labbé R et al (1998) A completely biological tissue-engineered human blood vessel. FASEB J 12:47–56. https://doi.org/10.1096/fasebj.12.1.47

    Article  Google Scholar 

  88. Li J, Wu C, Chu PK, Gelinsky M (2020) 3D printing of hydrogels: rational design strategies and emerging biomedical applications. Mater Sci Eng R Rep 140:100543. https://doi.org/10.1016/j.mser.2020.100543

    Article  Google Scholar 

  89. Baniasadi H, Ajdary R, Trifol J et al (2021) Direct ink writing of aloe vera/cellulose nanofibrils bio-hydrogels. Carbohydr Polym 266:118114. https://doi.org/10.1016/j.carbpol.2021.118114

    Article  Google Scholar 

  90. Guerra A, Roca A, de Ciurana J (2017) A novel 3D additive manufacturing machine to biodegradable stents. Procedia Manuf 13:718–723. https://doi.org/10.1016/j.promfg.2017.09.118

    Article  Google Scholar 

  91. Somers N, Jean F, Lasgorceix M et al (2023) Fabrication of doped β-tricalcium phosphate bioceramics by direct ink writing for bone repair applications. J Eur Ceram Soc 43:629–638. https://doi.org/10.1016/j.jeurceramsoc.2022.10.018

    Article  Google Scholar 

  92. Varma MV, Kandasubramanian B, Ibrahim SM (2020) 3D printed scaffolds for biomedical applications. Mater Chem Phys 255:123642. https://doi.org/10.1016/j.matchemphys.2020.123642

    Article  Google Scholar 

  93. Okolie O, Stachurek I, Kandasubramanian B, Njuguna J (2020) 3D printing for hip implant applications: a review. Polymers (Basel) 12:2682. https://doi.org/10.3390/polym12112682

    Article  Google Scholar 

  94. Mishra N, Kandasubramanian B (2018) Biomimetic design of artificial materials inspired by iridescent nacre structure and its growth mechanism. Polym Plast Technol Eng 57:1592–1606. https://doi.org/10.1080/03602559.2017.1326139

    Article  Google Scholar 

  95. Fu K, Wang Y, Yan C et al (2016) Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv Mater 28:2587–2594. https://doi.org/10.1002/adma.201505391

    Article  Google Scholar 

  96. Tagliaferri S, Panagiotopoulos A, Mattevi C (2021) Direct ink writing of energy materials. Mater Adv 2:540–563. https://doi.org/10.1039/D0MA00753F

    Article  Google Scholar 

  97. Zhu C, Liu T, Qian F et al (2016) Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett 16:3448–3456. https://doi.org/10.1021/acs.nanolett.5b04965

    Article  Google Scholar 

  98. Jiang Y, Xu Z, Huang T et al (2018) Direct 3D printing of ultralight graphene oxide aerogel microlattices. Adv Funct Mater 28:1707024. https://doi.org/10.1002/adfm.201707024

    Article  Google Scholar 

  99. Zhu C, Liu T, Qian F et al (2017) 3D printed functional nanomaterials for electrochemical energy storage. Nano Today 15:107–120. https://doi.org/10.1016/j.nantod.2017.06.007

    Article  Google Scholar 

  100. Fu K, Yao Y, Dai J, Hu L (2017) Progress in 3D printing of carbon materials for energy-related applications. Adv Mater 29:1603486. https://doi.org/10.1002/adma.201603486

    Article  Google Scholar 

  101. Zhang D, Chi B, Li B et al (2016) Fabrication of highly conductive graphene flexible circuits by 3D printing. Synth Met 217:79–86. https://doi.org/10.1016/j.synthmet.2016.03.014

    Article  Google Scholar 

  102. Kong N, Zhang J, Hegh D et al (2022) Environmentally stable MXene ink for direct writing flexible electronics. Nanoscale 14:6299–6304. https://doi.org/10.1039/D1NR07387G

    Article  Google Scholar 

  103. Zhou N, Liu C, Lewis JA, Ham D (2017) Gigahertz electromagnetic structures via direct ink writing for radio-frequency oscillator and transmitter applications. Adv Mater 29:1605198. https://doi.org/10.1002/adma.201605198

    Article  Google Scholar 

  104. Qi C-Z, Wu X, Liu J et al (2023) Highly conductive calcium ion-reinforced MXene/sodium alginate aerogel meshes by direct ink writing for electromagnetic interference shielding and Joule heating. J Mater Sci Technol 135:213–220. https://doi.org/10.1016/j.jmst.2022.06.046

    Article  Google Scholar 

  105. Jimmy J, Kandasubramanian B (2020) Mxene functionalized polymer composites: synthesis and applications. Eur Polym J 122:109367. https://doi.org/10.1016/j.eurpolymj.2019.109367

    Article  Google Scholar 

  106. Wang P, Yu W, Li G et al (2023) Printable, flexible, breathable and sweatproof bifunctional sensors based on an all-nanofiber platform for fully decoupled pressure–temperature sensing application. Chem Eng J 452:139174. https://doi.org/10.1016/j.cej.2022.139174

    Article  Google Scholar 

  107. Wajahat M, Lee S, Kim JH et al (2022) Three-dimensional printing of silver nanoparticle-decorated graphene microarchitectures. Addit Manuf 60:103249. https://doi.org/10.1016/j.addma.2022.103249

    Article  Google Scholar 

  108. Pinto RS, Serra JP, Barbosa JC et al (2021) Direct-ink-writing of electroactive polymers for sensing and energy storage applications. Macromol Mater Eng 306:2100372. https://doi.org/10.1002/mame.202100372

    Article  Google Scholar 

  109. Guan R, Zheng H, Liu Q et al (2022) DIW 3D printing of hybrid magnetorheological materials for application in soft robotic grippers. Compos Sci Technol 223:109409. https://doi.org/10.1016/j.compscitech.2022.109409

    Article  Google Scholar 

  110. Müller LAE, Demongeot A, Vaucher J et al (2022) Photoresponsive movement in 3D printed cellulose nanocomposites. ACS Appl Mater Interfaces 14:16703–16717. https://doi.org/10.1021/acsami.2c02154

    Article  Google Scholar 

  111. Korde JM, Kandasubramanian B (2018) Biocompatible alkyl cyanoacrylates and their derivatives as bio-adhesives. Biomater Sci 6:1691–1711. https://doi.org/10.1039/C8BM00312B

    Article  Google Scholar 

  112. Kotikian A, Truby RL, Boley JW et al (2018) 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order. Adv Mater 30:1706164. https://doi.org/10.1002/adma.201706164

    Article  Google Scholar 

  113. del Pozo M, Sol JAHP, van Uden SHP et al (2021) Patterned actuators via direct ink writing of liquid crystals. ACS Appl Mater Interfaces 13:59381–59391. https://doi.org/10.1021/acsami.1c20348

    Article  Google Scholar 

  114. Yan C, Zhang X, Ji Z et al (2021) 3D-printed electromagnetic actuator for bionic swimming robot. J Mater Eng Perform 30:6579–6587. https://doi.org/10.1007/s11665-021-05918-7

    Article  Google Scholar 

  115. Li J, Wu S, Zhang W et al (2022) 3D printing of silicone elastomers for soft actuators. Actuators 11:200. https://doi.org/10.3390/act11070200

    Article  Google Scholar 

  116. Liu X, Yuk H, Lin S et al (2018) 3D printing of living responsive materials and devices. Adv Mater 30:1704821. https://doi.org/10.1002/adma.201704821

    Article  Google Scholar 

  117. Mannoor MS, Jiang Z, James T et al (2013) 3D printed bionic ears. Nano Lett 13:2634–2639. https://doi.org/10.1021/nl4007744

    Article  Google Scholar 

  118. Tian K, Bae J, Bakarich SE et al (2017) 3D printing of transparent and conductive heterogeneous hydrogel-elastomer systems. Adv Mater 29:1604827. https://doi.org/10.1002/adma.201604827

    Article  Google Scholar 

  119. Saadi MASR, Maguire A, Pottackal NT et al (2022) Direct ink writing: a 3D printing technology for diverse materials. Adv Mater. https://doi.org/10.1002/adma.202108855

    Article  Google Scholar 

  120. Zhang Y, Shi G, Qin J et al (2019) Recent progress of direct ink writing of electronic components for advanced wearable devices. ACS Appl Electron Mater 1:1718–1734. https://doi.org/10.1021/acsaelm.9b00428

    Article  Google Scholar 

  121. Baldini A, Petrecca M, Sangregorio C, Anselmi-Tamburini U (2021) Magnetic properties of bulk nanocrystalline cobalt ferrite obtained by high-pressure field assisted sintering. J Phys D Appl Phys 54:194006. https://doi.org/10.1088/1361-6463/abe503

    Article  Google Scholar 

  122. Lewis JA, Gratson GM (2004) Direct writing in three dimensions. Mater Today 7:32–39. https://doi.org/10.1016/S1369-7021(04)00344-X

    Article  Google Scholar 

  123. Skylar-Scott MA, Gunasekaran S, Lewis JA (2016) Laser-assisted direct ink writing of planar and 3D metal architectures. Proc Natl Acad Sci 113:6137–6142. https://doi.org/10.1073/pnas.1525131113

    Article  Google Scholar 

  124. Chang R, Nam J, Sun W (2008) Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng Part A 14:41–48. https://doi.org/10.1089/ten.a.2007.0004

    Article  Google Scholar 

  125. Mehrali M, Bagherifard S, Akbari M et al (2018) Blending electronics with the human body: a pathway toward a cybernetic future. Adv Sci 5:1700931. https://doi.org/10.1002/advs.201700931

    Article  Google Scholar 

  126. Shindalkar SS, Humbe SS, Joshi GM, Kumar CR (2022) Engineering properties of Teflon derived blends and composites: a review. Polym Technol Mater 61:1973–1987. https://doi.org/10.1080/25740881.2022.2086815

Download references

Acknowledgements

The authors would like to acknowledge Prof. M. S. Sutaone, Director & Professor, College of Engineering Pune, Dr. S. P. Butee, Head of Department, Metallurgy and Materials Technology, College of Engineering Pune, Prof. V. T. Thavale, College of Engineering Pune, and Dr. C. P. Ramanarayanan, Vice Chancellor, DIAT (DU), Pune for their continuous encouragement and support. Authors wish to extend their special thanks to Mr. Jigar Patadiya, Miss Niranjana Jaya Prakash, Miss Alsha Subhash for their unwavering and continuous technical support throughout the review writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balasubramanian Kandasubramanian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandya, K.S., Shindalkar, S.S. & Kandasubramanian, B. Breakthrough to the pragmatic evolution of direct ink writing: progression, challenges, and future. Prog Addit Manuf 8, 1303–1328 (2023). https://doi.org/10.1007/s40964-023-00399-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40964-023-00399-7

Keywords

Navigation