Skip to main content
Log in

Corrosion behavior of AM-Ti-6Al-4V: a comparison between EBM and SLM

  • Full Research Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

This work studies and compares the corrosion behavior of different planes of additively manufactured (AM) Ti-6Al-4V in 0.9 M NaCl solution. The samples were prepared by two different methods: electron beam melting (EBM) and selective laser melting (SLM). The obtained results indicate that the processing has a strong influence on the susceptibility to corrosion of AM Ti-6Al-4V alloy. Two interesting phenomena were observed: (a) the corrosion resistance of XY-planes of EBM and SLM Ti-6Al-4V is quite similar and is better than that of the XZ-planes; (b) the corrosion resistance of SLM Ti-6Al-4V alloy is slightly better than that of EBM Ti-6Al-4V in both XY- and XZ-planes. The effect of processing on the microstructure and corrosion resistance is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, De A, Zhang W (2018) Additive manufacturing of metallic components—process, structure and properties. Prog Mater Sci 92:112–224

    Article  Google Scholar 

  2. Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–392

    Article  Google Scholar 

  3. Murr LE, Martinez E, Amato KN, Gaytan SM, Hernandez J, Ramirez DA, Shindo PW, Medina F, Wicker RB (2012) Fabrication of metal and alloy components by additive manufacturing: examples of 3D materials science. J Mater Res Technol 1:42–54

    Article  Google Scholar 

  4. Standard Terminology for Additive Manufacturing Technologies - ASTM F2792-12, ASTM International (2012)

  5. Körner C (2016) Additive manufacturing of metallic components by selective electron beam melting—a review. Int Mater Rev 61:361–377

    Article  Google Scholar 

  6. Cordero ZC, Meyer HM, Nandwana P, Dehoff RR (2017) Powder bed charging during electron-beam additive manufacturing. Acta Mater 124:437–445

    Article  Google Scholar 

  7. Tiferet E, Rivin O, Ganor M, Ettedgui H, Ozeri O, Caspi EN, Yeheskel O (2016) Structural investigation of selective laser melting and electron beam melting of Ti-6Al-4V using neutron diffraction. Addit Manuf 10:43–46

    Google Scholar 

  8. Leyens C, Peters M (eds) (2003) Titanium and titanium alloys. fundamentals and applications. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  9. Veiga C, Davim JP, Loureiro AJR (2012) Properties and applications of titanium alloys: a brief review. Rev Adv Mater Sci 32:133–148

    Google Scholar 

  10. Liu S, Shin YC (2019) Additive manufacturing of Ti6Al4V alloy: a review. Mater Des 164:107552

    Article  Google Scholar 

  11. Yang J, Yu H, Yin J, Gao M, Wang Z, Zeng X (2016) Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting. Mater Des 108:308–318

    Article  Google Scholar 

  12. He B, Wu W, Zhang L, Lu L, Yang Q, Long Q, Chang K (2018) Microstructural characteristic and mechanical property of Ti6Al4V alloy fabricated by selective laser melting. Vacuum 150:79–83

    Article  Google Scholar 

  13. Antonysamy AA, Meyer J, Prangnell PB (2013) Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti-6Al-4V by selective electron beam melting. Mater Charact 84:153–168

    Article  Google Scholar 

  14. Simonelli M, Tse YY, Tuck C (2014) Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V. Mater Sci Eng A 616:1–11

    Article  Google Scholar 

  15. Wu SQ, Lu YJ, Gan YL, Huang TT, Zhao CQ, Lin JJ, Guo S, Lin JX (2016) Microstructural evolution and microhardness of a selective-laser-melted Ti-6Al-4V alloy after post heat treatments. J Alloys Compd 672:643–652

    Article  Google Scholar 

  16. Ahmed T, Rack HJ (2018) Phase transformations during cooling in α + β titanium alloys. Mater Sci Eng A 243:206–211

    Article  Google Scholar 

  17. Safdar A, Wei LY, Snis A, Lai Z (2012) Evaluation of microstructural development in electron beam melted Ti-6Al-4V. Mater Charact 65:8–15

    Article  Google Scholar 

  18. Kok Y, Tan XP, Tor SB, Chua SK (2015) Fabrication and microstructural characterisation of additive manufactured Ti-6Al-4V parts by electron beam melting. Virtual Phys Prototyp 10:13–21

    Article  Google Scholar 

  19. Tan XP, Kok Y, Tan YJ, Descoins M, Mangelinck D, Tor SB, Leong KF, Chua CK (2015) Graded microstructure and mechanical properties of additive manufactured Ti-6Al-4V via electron beam melting. Acta Mater 97:1–16

    Article  Google Scholar 

  20. Sharma H, Parfitt D, Syed AK, Wimpenny D, Muzangaza E, Baxter G, Chen B (2019) A critical evaluation of the microstructural gradient along the build direction in electron beam melted Ti-6Al-4V alloy. Mater Sci Eng 744:182–194

    Article  Google Scholar 

  21. Wang P, Nai MLS, Sin WJ, Wei J (2015) Effect of building height on microstructure and mechanical properties of big-sized Ti-6Al-4V plate fabricated by electron beam melting. MATEC Web Conf 30:02001

    Article  Google Scholar 

  22. Cho JY, Xu W, Brandt M, Qian M (2019) Selective laser melting-fabricated Ti-6Al-4V alloy: microstructural inhomogeneity, consequent variations in elastic modulus and implications. Opt Laser Technol 111:664–670

    Article  Google Scholar 

  23. Xu W, Brandt M, Sun S, Elambasseril J, Liu Q, Latham K, Xia K, Qian M (2015) Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition. Acta Mater 85:74–84

    Article  Google Scholar 

  24. Kok Y, Tan XP, Wang P, Nai MLS, Loh NH, Liu E, Tor SB (2018) Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review. Mater Des 139:565–586

    Article  Google Scholar 

  25. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions, 2nd edn. NACE

  26. Sander G, Tan J, Balan P, Gharbi O, Feenstra DR, Singer L, Thomas S, Kelly RG, Scully JR, Birbilis N (2018) Corrosion of additively manufactured alloys: a review. Corrosion 74:1318–1350

    Article  Google Scholar 

  27. Abdeen DH, Palmer BR (2016) Corrosion evaluation of Ti-6Al-4V parts produced with electron beam melting machine. Rapid Prototyp J 22:322–329

    Article  Google Scholar 

  28. Bai Y, Gai X, Li S, Zhang LC, Liu Y, Hao Y, Zhang X, Yang R, Gao Y (2017) Improved corrosion behaviour of electron beam melted Ti-6Al-4V alloy in phosphate buffered saline. Corros Sci 123:289–296

    Article  Google Scholar 

  29. Gai X, Bai Y, Li J, Li S, Hou W, Hao Y, Zhang X, Yang R, Misra RDK (2018) Electrochemical behaviour of passive film formed on the surface of Ti-6Al-4V alloys fabricated by electron beam melting. Corros Sci 145:80–89

    Article  Google Scholar 

  30. Dai N, Zhang LC, Zhang J, Chen Q, Wu M (2016) Corrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solution. Corros Sci 102:484–489

    Article  Google Scholar 

  31. Leon A, Levy GK, Ron T, Shirizly A, Aghion E (2020) The effect of strain rate on stress corrosion performance of Ti6Al4V alloy produced by additive manufacturing process. J Mater Res Technol 9:4097–4105

    Article  Google Scholar 

  32. Sharma A, Oh MC, Kim JT, Srivastava AK, Ahn B (2020) Investigation of electrochemical corrosion behavior of additive manufactured Ti-6Al-4V alloy for medical implants in different electrolytes. J Alloy Compd 830:154620

    Article  Google Scholar 

  33. Zhao B, Wang H, Qiao N, Wang C, Hu M (2017) Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo. Mater Sci Eng C 70:832–841

    Article  Google Scholar 

  34. Fojt J, Fousova M, Jablonska E, Joska L, Hybasek V, Pruchova E, Vojtech D, Ruml T (2018) Corrosion behaviour and cell interaction of Ti-6Al-4V alloy prepared by two techniques of 3D printing. Mater Sci Eng C 93:911–920

    Article  Google Scholar 

  35. Koike M, Greer P, Owen K, Lilly G, Murr LE, Gaytan SM, Martinez E, Okabe T (2011) Evaluation of titanium alloys fabricated using rapid prototyping technologies—electron beam melting and laser beam melting. Materials 4:1776–1792

    Article  Google Scholar 

  36. Chen LY, Huang JC, Lin CH, Pan CT, Chen SY, Yang TL, Lin DY, Lin HK, Jang JSC (2017) Anisotropic response of Ti-6Al-4V alloy fabricated by 3D printing selective laser melting. Mater Sci Eng A 682:389–395

    Article  Google Scholar 

  37. Dai N, Zhang LC, Zhang J, Zhang X, Ni Q, Chen Y, Wu M, Yang C (2016) Distinction in corrosion resistance of selective laser melted Ti-6Al-4V alloy on different planes. Corros Sci 111:703–710

    Article  Google Scholar 

  38. Wu B, Pan Z, Li S, Cuiuri D, Ding D, Li H (2018) The anisotropic corrosion behaviour of wire arc additive manufactured Ti-6Al-4V alloy in 3.5% NaCl solution. Corros Sci 137:176–183

    Article  Google Scholar 

  39. Gong X, Cui Y, Wei D, Liu B, Liu R, Nie Y, Li Y (2017) Building direction dependence of corrosion resistance property of Ti-6Al-4V alloy fabricated by electron beam melting. Corros Sci 127:101–109

    Article  Google Scholar 

  40. American Society for Testing Materials (2014) Standard specification for additive manufacturing titanium-6 aluminum-4V anadium ELI (extra low interstitial) with powder bed fusion; ASTM F2924-14. American Society for Testing Materials, West Conshohocken

    Google Scholar 

  41. Gong H, Rafi K, Gu H, Starr T, Stucker B (2014) Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes. Addit Manuf 1:87–98

    Google Scholar 

  42. Bär F, Berger L, Jauer L, Kurtuldu G, Schäublin R, Schleifenbaum JH, Löffler JF (2019) Laser additive manufacturing of biodegradable magnesium alloy WE43: a detailed microstructure analysis. Acta Biomater 98:36–49

    Article  Google Scholar 

  43. Zhao XL, Li SJ, Zhang M, Liu YD, Sercombe TB, Wang SG, Hao Y, Yang R, Murr LE (2016) Comparison of the microstructures and mechanical properties of Ti-6Al-4V fabricated by selective laser melting and electron beam melting. Mater Des 95:21–31

    Article  Google Scholar 

  44. Boyer R, Welsch G, Collings EW (1994) Materials properties handbook: titanium alloys. ASM International, Materials Park

    Google Scholar 

  45. Gil Mur FX, Rodríguez D, Planell JA (1996) Influence of tempering temperature and time on the α′-Ti-6Al-4V martensite. J Alloys Compd 234:287–289

    Article  Google Scholar 

  46. Bower K, Murray S, Reinhart A, Nieto A (2020) Corrosion resistance of selective laser melted Ti-6Al-4V alloy in salt fog environment. Results Mater 8:100122

    Article  Google Scholar 

  47. Chandramohan P, Bhero S, Obadele BA, Olubambi PA (2017) Laser additive manufactured Ti-6Al-4V alloy: tribology and corrosion studies. Int J Adv Manuf Technol 92:3051–3061

    Article  Google Scholar 

  48. Saadi SA, Yi Y, Cho P, Jang C, Beeley P (2016) Passivity breakdown of 316L stainless steel during potentiodynamic polarization in NaCl solution. Corros Sci 111:720–727

    Article  Google Scholar 

  49. McCafferty C (2005) Validation of corrosion rates measured by the Tafel extrapolation method. Corros Sci 47:3202–3215

    Article  Google Scholar 

  50. Assis SL, Wolynec S, Costa I (2006) Corrosion characterization of titanium alloys by electrochemical techniques. Electrochim Acta 51:1815–1819

    Article  Google Scholar 

  51. Atapour M, Pilchak AL, Shamanian M, Fathi MH (2011) Corrosion behavior of Ti-8Al-1Mo-1V alloy compared to Ti-6Al-4V. Mater Des 32:1692–1696

    Article  Google Scholar 

  52. Jorcin JB, Orazem ME, Pebere N, Tribollet B (2006) CPE analysis by local electrochemical impedance spectroscopy. Electrochim Acta 51:1473–1479

    Article  Google Scholar 

  53. Dai NW, Zhang JX, Chen Y, Zhang LC (2017) Heat treatment degrading the corrosion resistance of selective laser melted Ti-6Al-4V alloy. J Electrochem Soc 164:C428–C434

    Article  Google Scholar 

  54. Martin É, Azzi M, Salishchev GA, Szpunar J (2010) Influence of microstructure and texture on the corrosion and tribocorrosion behavior of Ti-6Al-4V. Tribol Int 43:918–924

    Article  Google Scholar 

  55. Metalnikov P, Ben-Hamu G, Templeman Y, Shin KS, Meshi L (2018) The relation between Mn additions, microstructure and corrosion behavior of new wrought Mg-5Al alloys. Mater Char 145:101–115

    Article  Google Scholar 

  56. Metalnikov P, Ben-Hamu G, Shin KS (2021) Relation between Zn additions, microstructure and corrosion behavior of new wrought Mg-5Al alloys. Met Mater Int 27:1493–1505

    Article  Google Scholar 

  57. Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23:1917–1928

    Article  Google Scholar 

  58. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B Eng 143:172–196

    Article  Google Scholar 

  59. Bermingham MJ, McDonald SD, Dargusch MS, StJohn DH (2008) Grain-refinement mechanisms in titanium alloys. J Mater Res 23:97–104

    Article  Google Scholar 

  60. Yang J, Yang H, Yu H, Wang Z, Zeng X (2017) Corrosion behavior of additive manufactured Ti-6Al-4V alloy in NaCl solution. Metall Mater Trans A 48A:3583–3593

    Article  Google Scholar 

  61. Ju J, Li JJ, Jiang M, Li MY, Yang LX, Wang KM, Yang C, Kang MD, Wang J (2021) Microstructure and electrochemical corrosion behavior of selective laser melted Ti-6Al-4V alloy in simulated artificial saliva. Trans Nonferr Met Soc China 31:167–177

    Article  Google Scholar 

  62. Galarraga H, Lados DA, Dehoff RR, Kirka MM, Nandwana P (2016) Effects of the microstructure and porosity on properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM). Addit Manuf 10:47–57

    Google Scholar 

  63. Xu Y, Lu Y, Sundberg KL, Liang J, Sisson RD (2017) Effect of annealing treatments on the microstructure, mechanical properties and corrosion behavior of direct metal laser sintered Ti-6Al-4V. J Mater Eng Perform 26:2572–2582

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Vladimir Ezersky for the TEM measurements.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Ben-Hamu.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metalnikov, P., Ben-Hamu, G. & Eliezer, D. Corrosion behavior of AM-Ti-6Al-4V: a comparison between EBM and SLM. Prog Addit Manuf 7, 509–520 (2022). https://doi.org/10.1007/s40964-022-00293-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40964-022-00293-8

Keywords

Navigation