Skip to main content
Log in

Experimental and analytical investigations of AlSi10Mg, stainless steel, Inconel 625 and Ti-6Al-4V porous materials printed via powder bed fusion

  • Full Research Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

This paper reports on experimental and analytical results showing the relationship between metal porous materials properties and laser parameters developed using a Powder Bed Fusion. We have 3D printed a series of porous materials coupons by varying laser parameters such as scan speed and laser power. This is shown to be a successful strategy for four different materials: AlSi10Mg, Stainless steel 316L, Inconel 625 and Ti-6Al-4V. The resulting porous material is characterized with measurements of the effective pore radius, permeability and the porosity to assess the performance. The experimental results lead to the definition of a process window of laser parameters that can be used to fabricate metal porous materials for each of the specified materials. Within this process window, we show that it is possible to obtain porous materials with pore radii ranging from 1.1 to 28.1 μm, porosity ranging from 10.4 to 42.4% and permeability ranging from 5.9 × 10–16 to 4.4 × 10–12 m2. This is solely achieved by varying laser parameters. We also describe models to predict porous material’s properties. Based on experimental results, we show that porosity can be controlled by varying laser parameters and, especially, applying appropriate energy density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

A :

Absorptivity

C :

Empirical geometrical parameter in KC model

E :

Energy density (J/mm3)

h :

Length from the top of sample (m)

K :

Permeability (m2)

K c :

Permeability of simplified KC model (m2)

K f :

Permeability of fractal model (m2)

K t :

Permeability of threshold KC model (m2)

l :

Length of sample (m)

l e :

Tortuous pass (m)

L :

Layer thickness (m)

:

Mass flow rate ((kg/m3)

p g :

Gas pressure (Pa)

p l :

Liquid pressure (Pa)

P :

Laser power (W)

R eff :

Effective pore radius (m)

R r :

Representative pore radius

S w :

Cross-sectional area of sample (m2)

T :

Temperature (K)

V :

Scanning velocity (m/s)

w :

Melting width (m)

ϵ :

Porosity

θ :

Contact angle (°)

μ :

Viscousity (Pa s)

ρl :

Liquid density (kg/m3)

ρp :

Porous material density (kg/m3)

ρs :

Solid density (kg/m3)

σ :

Surface tension

τ :

Tortuosity

R eff :

Effective pore radius (m)

R r :

Representative pore radius

References

  1. Faghri A (2014) Heat pipes: review, opportunities and challenges. Front Heat Pipes 5(1)

  2. Daimaru T et al (2019) Development of an evaporator using porous wick structure for a two-phase mechanically pumped fluid loop. In: Proceedings of 49th international conference on environmental systems

  3. Ranjan R et al (2009) Analysis of the wicking and thin-film evaporation characteristics of microstructures. ASME J Heat Transf 131:1–11

    Article  Google Scholar 

  4. Furst BI et al (2018) An additively manufactured evaporator with control. In: Proceedings of 48th international conference on environmental systems

  5. Richard B, Pellicone D, Bill A (2017) Loop heat pipe wick fabrication via additive manufacturing. In: Advance in cooling technologies in proceedings of 47th international conference on environment and system, pp 1–10

  6. Esarte J, Blanco JM, Bernardini A, San-José JT (2017) Optimizing the design of a two-phase cooling system loop heat pipe: wick manufacturing with the 3D selective laser melting printing technique and prototype testing. Appl Therm Eng 111:407–419

    Article  Google Scholar 

  7. Jafari D, Wits WW, Geurts BJ (2018) Metal 3D-printed wick structures for heat pipe application: capillary performance analysis. Appl Therm Eng 143:403–414

    Article  Google Scholar 

  8. Zhang C, Zhang L, Xu H, Li P, Qian B (2019) Performance of pool boiling with 3D grid structure manufactured by selective laser melting technique. Int J Heat Mass Transf 128:570–580

    Article  Google Scholar 

  9. Ameli M et al (2013) A novel method for manufacturing sintered aluminium heat pipes (SAHP). Appl Therm Eng 52:498–504

    Article  Google Scholar 

  10. Ramirez DA et al (2011) Open-cellular copper structures fabricated by additive manufacturing using electron beam melting. Mater Sci Eng A 528:5379–5386

    Article  Google Scholar 

  11. Stamp R, Fox P, O’Neill W, Jones E, Sutcliffe C (2009) The development of a scanning strategy for the manufacture of porous biomaterials by selective laser melting. J Mater Sci Mater Med 20:1839–1848

    Article  Google Scholar 

  12. Abele E, Stoffregen HA, Kniepkamp M, Lang S, Hampe M (2015) Selective laser melting for manufacturing of thin-walled porous elements. J Mater Process Technol 215:114–122

    Article  Google Scholar 

  13. Promoppatum P, Onler R, Yao SC (2017) Numerical and experimental investigations of micro and macro characteristics of direct metal laser sintered Ti-6Al-4V products. J Mater Process Technol 240:262–273

    Article  Google Scholar 

  14. Liu A et al (2010) Properties of test coupons fabricated by selective laser melting. Key Eng Mater 447–448:780–784

    Article  Google Scholar 

  15. Yap CY et al (2015) Review of selective laser melting: materials and applications. Appl Phys Rev 2(4):041101

    Article  Google Scholar 

  16. Read N, Wang W, Essa K, Attallah MM (2015) Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development. Mater Des 65:417–424

    Article  Google Scholar 

  17. Wang LZ, Wang S, Wu JJ (2017) Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting. Opt Laser Technol 96:88–96

    Article  Google Scholar 

  18. Gong H, Rafi K, Gu H, Starr T, Stucker B (2014) Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes. Addit Manuf 1:87–98

    Google Scholar 

  19. Olakanmi EO, Cochrane RF, Dalgarno KW (2015) A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog Mater Sci 74:401–477

    Article  Google Scholar 

  20. Dongdong G, Shen T (2009) Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods. Mater Des 30:2903–2910

    Article  Google Scholar 

  21. Dinda GP, Dasgupta AK, Mazumder J (2009) Laser aided direct metal deposition of Inconel 625 superalloy: microstructural evolution and thermal stability. Mater Sci Eng 509:98–104

    Article  Google Scholar 

  22. Fan Z, Liou F (2012) Numerical modeling of the additive manufacturing (AM) processes of titanium alloy. In: Titanium alloys-towards achieving enhanced properties for diversified applications, pp 3–28

  23. Sateesh NH, Kumar GCM, Prasad K, Vinod AR (2014) Microstructure and mechanical characterization of laser sintered Inconel-625 Superalloy. Proc Mater Sci 5:772–779

    Article  Google Scholar 

  24. Song B, Dong S, Zhang B, Liao H, Coddet C (2012) Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V. Mater Des 35:120–125

    Article  Google Scholar 

  25. Montgomery C, Beuth J, Sheridan L, Klingbeil N (2015) Process mapping of Inconel 625 in laser powder bed additive manufacturing. In: Solid Freeform Fabrication Symposium, pp 1195–1204. https://doi.org/10.1080/00207543.2016.1223378

  26. Zhang M et al (2018) Predictive models for fatigue property of laser powder bed fusion stainless steel 316L. Mater Des 145:42–54

    Article  Google Scholar 

  27. Kruth J, Badrossamay M, Yasa E, Deckers J, Thijs L, Van Humbeeck J (2010) Part and material properties in selective laser melting of metals. In: Proceedings of 16th international symposium on electromachining (ISEM XVI), Shanghai, China

  28. Liu B, Wildman R, Tuck C, Ashcroft I, Hague R (2011) Investigation the effect of particle size distribution on processing parameters optimisation in selective laser melting process. In: Bourell D (ed) International solid freeform fabrication symposium: an additive manufacturing conference. University of Texas at Austin, Austin, pp 227–238

    Google Scholar 

  29. Dadbakhsh S, Hao L, Sewell N (2012) Effect of selective laser melting layout on the quality of stainless steel parts. Rapid Prototyp J 18:241–249

    Article  Google Scholar 

  30. Laohaprapanon A, Jeamwatthanachai P, Wongcumchang M, Chantarapanich N, Chantaweroad S, Sitthiseripratip K, Wisutmethangoon S (2012) Optimal scanning condition of selective laser melting processing with stainless steel 316l powder. Material and manufacturing technology Ii, Pts 1 and 2. Trans Tech Publications Ltd, Stafa-Zurich, pp 816–820

    Google Scholar 

  31. Yadroitsev I, Smurov I (2010) Selective laser melting technology: from the single laser melted track stability to 3D parts of complex shape. Phys Proc 5:551–560

    Article  Google Scholar 

  32. Applied porous technology Inc. (2018) Personal contact and company website. https://appliedporous.com/. Accessed July 2018

  33. Adkins DR, Dykhuizen RC (1993) Procedures for measuring the properties of heat-pipe wick materials. In: 28th Intersociety energy conversion engineering conference, pp 911–917

  34. Muratov GN (1980) Oberflächespannung von Benzol und Ethanol. Zh Fiz Khim 54:2088–2089

    Google Scholar 

  35. Hernández A, Calvo JI, Prádanos P, Tejerina F (1996) Pore size distributions in microporous membranes. A critical analysis of the bubble point extended method. J Membr Sci 112(1):1–12

    Article  Google Scholar 

  36. Innocentini MDM, Pandolfelli VC (2001) Permeable porosity of refractory castables evaluated by the water-expulsion porosimetry technique. J Am Ceram Soc 84:236–238

    Article  Google Scholar 

  37. Miyakita T, Nagano H (2011) Characteristic evaluation of polymer wick and application to loop heat pipes. The 48th Japan Society for Aeronautics and Astronautics Kansai/Chubu Branch joint autumn meeting friday, Kobe Industrial Promotion Center, 25 November 2011

  38. Pei W et al (2017) Numerical simulation and parametric analysis of selective laser melting process of AlSi10Mg powder. Appl Phys A 123(8):1–15

    Article  Google Scholar 

  39. Engineering Properties of Steels, Harvey PD (eds) (1982) American Society for Metals, Metals Park, OH

  40. United Performance Metals (2008) Nickel-based super alloy Inconel 625—properties and applications. United Performance Alloys

    Google Scholar 

  41. Mills KC (2002) Recommended values of thermophysical properties for selected commercial alloys. Woodhead Publishing Ltd, Cambridge (ISBN 978-1855735699)

    Book  Google Scholar 

  42. Nishiyama N, Yokoyama T (2017) Permeability of porous media: Role of the critical pore size. J Geophys Res Solid Earth 122:6955–6971. https://doi.org/10.1002/2016JB013793

    Article  Google Scholar 

  43. Haynes WM (ed) (2015) CRC handbook of chemistry and physics, 95th edition, 95th edn. CRC Press, Boca Raton

    Google Scholar 

  44. O’Neil MJ (ed) (2013) The Merck Index—an encyclopedia of chemicals, drugs, and biologicals. Royal Society of Chemistry, Cambridge

    Google Scholar 

  45. Yokoyama T, Takeuchi S (2009) Porosimetry of vesicular volcanic products by a water-expulsion method and the relationship of pore characteristics to permeability. J Geophys Res 114:B02201. https://doi.org/10.1029/2008JB005758

    Article  Google Scholar 

  46. Deng DX et al (2013) Characterization of capillary performance of composite wicks for two-phase heat transfer devices. Int J Heat Mass Transf 56(1–2):283–293

    Article  Google Scholar 

  47. Semenic T, Lin YY, Catton I (2008) Thermophysical properties of biporous heat pipe evaporators. ASME J Heat Transfer 130:022602

    Article  Google Scholar 

  48. Espinosa FAD, Brisson TBPJG (2012) Effect of fabrication parameters on the thermophysical properties of sintered wicks for heat pipe applications. Int J Heat Mass Transfer. https://doi.org/10.1016/j.ijheatmasstransfer.2012.07.037

    Article  Google Scholar 

  49. Costa A (2006) Permeability-porosity relationship: a reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption. Geophys Res Lett 33:1–5

    Article  Google Scholar 

  50. Arns CH, Knackstedt MA, Martys NS (2005) Cross-property correlations and permeability estimation in sandstone. Phys Rev E 72:046304. https://doi.org/10.1103/PhysRevE.72.046304

    Article  Google Scholar 

  51. Schwartz LM, Martys N, Bentz DP, Garboczi EJ, Torquato S (1993) Cross-property relations and permeability estimation in model porous media. Phys Rev E 48:4584–4591. https://doi.org/10.1103/PhysRevE.48.4584

    Article  Google Scholar 

  52. Kozeny J (1927) Uber Kapillare Leitung des Wassers im Boden, Sitzungs-berichte. R Acad Sci Proc Class I 136:271–306

    Google Scholar 

  53. Carman PC (1937) Fluid flow through a granular bed. Trans Inst Chem Eng Lond 15:150–156

    Google Scholar 

  54. Beyhaghi S, Geoffroy S, Prat M, Pillai KM (2014) Wicking and evaporation of liquids in porous wicks: a simple analytical approach to optimization of wick design. AIChE J 60:1930–1940

    Article  Google Scholar 

  55. Pape H, Clauser C, Iffland J (1999) Permeability prediction based on fractal pore-space geometry. Geophysics 64(5):1447–1460

    Article  Google Scholar 

  56. Macdonald IF, El-Sayed MS, Mow K, Dullien FAL (1979) Flow through porous media—the Ergun equation revisited. Ind Eng Chem Fundam 18:199–208

    Article  Google Scholar 

  57. Krause M, Perrin JC, Kuo CW, Benson SM (2009) Characterization of CO2 storage properties using core analysis techniques and thin section data. Energy Proc 1:2969–2974

    Article  Google Scholar 

  58. Pape H, Clauser C, Iffland J (1999) Permeability prediction based on fractal pore-space geometry. Geophysics 64:1447–1460

    Article  Google Scholar 

Download references

Acknowledgements

The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin I. Furst.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gotoh, R., Furst, B.I., Roberts, S.N. et al. Experimental and analytical investigations of AlSi10Mg, stainless steel, Inconel 625 and Ti-6Al-4V porous materials printed via powder bed fusion. Prog Addit Manuf 7, 943–955 (2022). https://doi.org/10.1007/s40964-022-00269-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40964-022-00269-8

Keywords

Navigation