Skip to main content

Advertisement

Log in

A review on non-destructive evaluation and characterization of additively manufactured components

  • Review Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

One of the most promising manufacturing processes for producing complex geometries in a shorter amount of time is additive manufacturing. However, the majority of additively manufactured industrial components fail to meet their intended specifications. The surface quality achieved by additive manufacturing parts is one of the major concerns of the industries. Furthermore, the additively manufactured components are prone to a wide range of interior and exterior flaws. Non-destructive evaluation has been identified as one of the most effective methods for resolving this issue. This review paper provides an overview of the most common occurring defects in the additive manufactured components, as well as the various non-destructive evaluation methods applicable to additive manufacturing components and their capability to detect and control the defects formed during manufacturing and service of the components. The suitability and challenges of applying non-destructive techniques to various additive manufacturing processes and parts are also discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chua CK, Wong CH, Yeong WY (2017) Material characterization for additive manufacturing. Standards, quality control, and measurement sciences in 3d printing and additive manufacturing. Elsevier, pp 95–137

    Chapter  Google Scholar 

  2. Huang SH, Liu P, Mokasdar A, Hou L (2012) Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-012-4558-5

    Article  Google Scholar 

  3. Levy GN, Schindel R, Kruth JP (2003) Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Ann Manuf Technol 52:589–609. https://doi.org/10.1016/S0007-8506(07)60206-6

    Article  Google Scholar 

  4. Waller JM, Parker BH, Hodges KL, et al (2014) Nondestructive Evaluation of Additive Manufacturing State-of-the-Discipline Report. Nasa/Tm-2014-218560 1–36

  5. Mandache C (2019) Materials Science and Technology Overview of non-destructive evaluation techniques for metal-based additive manufacturing. Catalin Mandache. https://doi.org/10.1080/02670836.2019.1596370

    Article  Google Scholar 

  6. (2010) Non-destructive testing. In: Instrumentation Reference Book. Elsevier Inc., pp 567–592

  7. Olin BD, Meeker WQ (1996) Applications of statistical methods to nondestructive evaluation. Technometrics 38:95–112. https://doi.org/10.1080/00401706.1996.10484451

    Article  MATH  Google Scholar 

  8. Hassen AA, Kirka MM (2018) Additive manufacturings the rise of a technology and the need for quality control and inspection techniques. Mater Eval 76:438–453

    Google Scholar 

  9. Kim FH, Moylan SP (2018) Literature Review of Metal Additive Manufacturing Defects. US Department of Commerce, National Institute of Standards and Technology, pp 1–17

  10. Dutton B, Vesga W, Waller J, James S, Seifi M (2020) Metal additive manufacturing defect formation and nondestructive evaluation detectability. In: Structural integrity of additive manufactured parts. ASTM International

  11. Collins PC, Bond LJ, Taheri H et al (2017) Powder-based additive manufacturing - a review of types of defects, generation mechanisms, detection, property evaluation and metrology. Int J Addit Subtractive Mater Manuf 1:172. https://doi.org/10.1504/ijasmm.2017.10009247

    Article  Google Scholar 

  12. Gong H, Rafi K, Gu H et al (2015) Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting. Mater Des 86:545–554. https://doi.org/10.1016/j.matdes.2015.07.147

    Article  Google Scholar 

  13. Lewandowski JJ, Seifi M (2016) Metal additive manufacturing: a review of mechanical properties. Annu Rev Mater Res 46:151–186. https://doi.org/10.1146/annurev-matsci-070115-032024

    Article  Google Scholar 

  14. Awd M, Tenkamp J, Hirtler M et al (2017) Comparison of microstructure and mechanical properties of Scalmalloy® produced by selective laser melting and laser metal deposition. Materials (Basel). https://doi.org/10.3390/ma11010017

    Article  Google Scholar 

  15. Witkin DB, Sitzman S, Kim Y, Adelman E, Paul Adams NI (2018) Experimental nondestructive characterization of an aluminum alloy prepared by powder-bed additive manufacturing. Mater Eval 76:489–502

    Google Scholar 

  16. Seifi M, Gorelik M, Waller J et al (2017) Progress towards metal additive manufacturing standardization to support qualification and certification. JOM 69:439–455. https://doi.org/10.1007/s11837-017-2265-2

    Article  Google Scholar 

  17. Waller J, Wells D, James S, Nichols C (2017) Additive manufactured product integrity. Quality Leadership Forum, Cape Canaveral, FL

  18. Koester LW, Taheri H, Bigelow TA et al (2018) Nondestructive testing for metal parts fabricated using powder-based additive manufacturing. Mater Eval 76:514–524

    Google Scholar 

  19. Gorelik M (2017) Additive manufacturing in the context of structural integrity. Int J Fatigue 94:168–177. https://doi.org/10.1016/j.ijfatigue.2016.07.005

    Article  Google Scholar 

  20. Tammas-Williams S, Withers PJ, Todd I, Prangnell PB (2016) The effectiveness of hot isostatic pressing for closing porosity in titanium parts manufactured by selective electron beam melting. Metall Mater Trans A Phys Metall Mater Sci 47:1939–1946. https://doi.org/10.1007/s11661-016-3429-3

    Article  Google Scholar 

  21. Gusarov AV, Pavlov M, Smurov I (2011) Residual stresses at laser surface remelting and additive manufacturing. Physics Procedia. Elsevier B.V., pp 248–254

    Google Scholar 

  22. Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45. https://doi.org/10.1016/j.actamat.2016.02.014

    Article  Google Scholar 

  23. Shiva S, Palani IA, Mishra SK et al (2015) Investigations on the influence of composition in the development of Ni-Ti shape memory alloy using laser based additive manufacturing. Opt Laser Technol 69:44–51. https://doi.org/10.1016/j.optlastec.2014.12.014

    Article  Google Scholar 

  24. DePond PJ, Guss G, Ly S et al (2018) In situ measurements of layer roughness during laser powder bed fusion additive manufacturing using low coherence scanning interferometry. Mater Des 154:347–359. https://doi.org/10.1016/j.matdes.2018.05.050

    Article  Google Scholar 

  25. سینا ا (1386) No Titleقانون در طب. 283

  26. Fay DL (1967) Laser powder- bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Angew Chemie Int Ed 6(11):951–952

    Article  Google Scholar 

  27. Brennan M, Keist JS, Palmer TA (2020) Defects in Metal Additive Manufacturing Processes. Addit Manuf Process 24: 277–286. https://doi.org/10.31399/asm.hb.v24.a0006557

  28. Manvatkar V, De A, Debroy T (2014) Heat transfer and material flow during laser assisted multi-layer additive manufacturing. J Appl Phys. https://doi.org/10.1063/1.4896751

    Article  Google Scholar 

  29. Cerniglia D, Scafidi M, Pantano A, Rudlin J (2015) Inspection of additive-manufactured layered components. Ultrasonics 62:292–298. https://doi.org/10.1016/j.ultras.2015.06.001

    Article  Google Scholar 

  30. Nadimpalli VK, Karthik GM, Janakiram GD, Nagy PB (2020) Monitoring and repair of defects in ultrasonic additive manufacturing. Int J Adv Manuf Technol 108:1793–1810. https://doi.org/10.1007/s00170-020-05457-w

    Article  Google Scholar 

  31. Li C, Liu ZY, Fang XY, Guo YB (2018) Residual stress in metal additive manufacturing. Procedia CIRP. Elsevier B.V., pp 348–353

    Google Scholar 

  32. Gockel J, Sheridan L, Koerper B, Whip B (2019) The influence of additive manufacturing processing parameters on surface roughness and fatigue life. Int J Fatigue 124:380–388. https://doi.org/10.1016/j.ijfatigue.2019.03.025

    Article  Google Scholar 

  33. Kaji F, Barari A, Kaji F, Barari A (2015) ScienceDirect evaluation of the surface roughness manufacturing cusp geometry cusp geometry. IFAC-PapersOnLine 48:658–663. https://doi.org/10.1016/j.ifacol.2015.06.157

    Article  Google Scholar 

  34. Schröder M, Biedermann C, Vilbrandt R (2013) On the applicability of dye penetrant tests on vacuum components: allowed or forbidden?

  35. Deutsch S (1979) Preliminary study of the fluid mechanics of liquid penetrant testing. J Res Natl Bur Stand (United States) 82:287–292

    Article  Google Scholar 

  36. Honarvar F, Varvani-Farahani A (2020) A review of ultrasonic testing applications in additive manufacturing: defect evaluation, material characterization, and process control. Ultrasonics 108:106227

    Article  Google Scholar 

  37. Tofeldt O, Pierce SG, Smillie G, et al (2018) Investigation of fundamental ultrasonic propagation characteristics in NDT of Electron Beam Melted additive manufactured samples—Inconel 718. 12th Eur Conf Non-Destructive Test (ECNDT 2018) 1–4

  38. Kube CM, Shu Y, Lew AJ, Galles D (2018) Real-time characterization of laser-generated melt pools using ultrasound. Mater Eval 76:525–534

    Google Scholar 

  39. Lopez A, Bacelar R, Pires I et al (2018) Non-destructive testing application of radiography and ultrasound for wire and arc additive manufacturing. Addit Manuf 21:298–306. https://doi.org/10.1016/j.addma.2018.03.020

    Article  Google Scholar 

  40. Chabot A, Laroche N, Carcreff E et al (2020) Towards defect monitoring for metallic additive manufacturing components using phased array ultrasonic testing. J Intell Manuf 31:1191–1201. https://doi.org/10.1007/s10845-019-01505-9

    Article  Google Scholar 

  41. Lu QY, Wong CH (2018) Additive manufacturing process monitoring and control by non-destructive testing techniques: challenges and in-process monitoring. Virtual Phys Prototyp 13:39–48. https://doi.org/10.1080/17452759.2017.1351201

    Article  Google Scholar 

  42. Kratochvilova, V., Vlasic, F., Mazal P (2018) Acoustic emission of fatigue damage of additively produced and cast materials. In: Proceedings of the 12th European Conference on Non-destructive testing

  43. Sharratt BM (2015) Non-destructive techniques and technologies for qualification of additive manufactured parts and processes: a literature review. Dep Natl Def Canada 55:91–127

    Google Scholar 

  44. Rieder H, Dillhöfer A, Spies M et al (2014) Online monitoring of additive manufacturing processes using ultrasound 2. Additive manufacturing and quality assurance considerations 3. Ultrasonic process monitoring. Proc 11th Eur Conf Non-Destructive Test 1:2194–2201

    Google Scholar 

  45. Zikmund T, Šalplachta J, Zatočilová A et al (2019) Computed tomography based procedure for reproducible porosity measurement of additive manufactured samples. NDT E Int 103:111–118. https://doi.org/10.1016/j.ndteint.2019.02.008

    Article  Google Scholar 

  46. Kerckhofs G, Schrooten J, Van Cleynenbreugel T et al (2008) Validation of x-ray microfocus computed tomography as an imaging tool for porous structures. Rev Sci Instrum. https://doi.org/10.1063/1.2838584

    Article  Google Scholar 

  47. Baniukiewicz P (2014) Automated defect recognition and identification in digital radiography. J Nondestruct Eval 33:327–334. https://doi.org/10.1007/s10921-013-0216-6

    Article  Google Scholar 

  48. Baumgartl H, Tomas J, Buettner R, Merkel M (2020) A deep learning-based model for defect detection in laser-powder bed fusion using in-situ thermographic monitoring. Prog Addit Manuf 5:277–285. https://doi.org/10.1007/s40964-019-00108-3

    Article  Google Scholar 

  49. Jorge Aldave I, Venegas Bosom P, Vega González L et al (2013) Review of thermal imaging systems in composite defect detection. Infrared Phys Technol 61:167–175

    Article  Google Scholar 

  50. D’accardi E, Altenburg S, Maierhofer C, et al (2019) Detection of typical metal additive manufacturing defects by the application of thermographic techniques. Proc 27(1):24. https://doi.org/10.3390/proceedings2019027024

  51. Netzelmann U, Walle G, Lugin S et al (2016) Quantitative InfraRed Thermography Journal Induction thermography: principle, applications and first steps towards standardisation Induction thermography: principle, applications and first steps towards standardisation. Quant infrared Thermogr 13:170–181. https://doi.org/10.1080/17686733.2016.1145842

    Article  Google Scholar 

  52. Lord W, Nath S, Shin YK, You Z (1990) Electromagnetic methods of defect detection. IEEE Trans Magn 26(5):2070–2075

  53. Todorov, E., Boulware, P., Gaah K (2018) Demonstration of array eddy current technology for real-time monitoring of laser powder bed fusion additive manufacturing process. In: Proceedings of SPIE Smart structures and materials+ nondestructive evaluation and Health monitoring

  54. Yusa N, Chen W, Wang J, Hashizume H (2016) Fabrication of imitative cracks by 3D printing for electromagnetic nondestructive testing and evaluations. Case Stud Nondestruct Test Eval 5:9–14. https://doi.org/10.1016/j.csndt.2016.03.004

    Article  Google Scholar 

  55. Mandache C, Krause TW, Clapham L (2007) Investigation of optimum field amplitude for stress dependence of magnetic barkhausen noise. IEEE Trans Magn 43:3976–3983. https://doi.org/10.1109/TMAG.2007.904793

    Article  Google Scholar 

  56. McCann R, Obeidi MA, Hughes C et al (2021) In-situ sensing, process monitoring and machine control in Laser Powder Bed Fusion: a review. Addit Manuf 45:102058. https://doi.org/10.1016/j.addma.2021.102058

    Article  Google Scholar 

  57. Xu Y, Wu X, Guo X et al (2017) The boom in 3D-printed sensor technology. Sensors. https://doi.org/10.3390/s17051166

    Article  Google Scholar 

  58. Lu QY, Wong CH (2018) Additive manufacturing process monitoring and control by non-destructive testing techniques: challenges and in-process monitoring. Virtual Phys prototyp. 13(2):39–48

  59. Fuh JYH, Lu L, Tan CC et al (1999) Curing characteristics of acrylic photopolymer used in stereolithography process. Rapid Prototyp J 5:27–34. https://doi.org/10.1108/13552549910251855

    Article  Google Scholar 

  60. Hong W, Lee YT, Gong H (2004) Thermal analysis of layer formation in a stepless rapid prototyping process. Appl Therm Eng 24:255–268. https://doi.org/10.1016/j.applthermaleng.2003.08.015

    Article  Google Scholar 

  61. Corcione CE, Greco A, Maffezzoli A (2006) Temperature evolution during stereolithography building with a commercial epoxy resin. Polym Eng Sci 46:493–502. https://doi.org/10.1002/pen.20488

    Article  Google Scholar 

  62. Iravani-Tabrizipour M, Toyserkani E (2007) An image-based feature tracking algorithm for real-time measurement of clad height. Mach Vis Appl 18:343–354. https://doi.org/10.1007/s00138-006-0066-7

    Article  Google Scholar 

  63. Hua T, Jing C, Xin L et al (2008) Research on molten pool temperature in the process of laser rapid forming. J Mater Process Technol 198:454–462. https://doi.org/10.1016/j.jmatprotec.2007.06.090

    Article  Google Scholar 

  64. Sun Q, Rizvi GM, Bellehumeur CT, Gu P (2008) Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp J 14:72–80. https://doi.org/10.1108/13552540810862028

    Article  Google Scholar 

  65. Sood AK, Ohdar RK, Mahapatra SS (2009) Improving dimensional accuracy of Fused Deposition Modelling processed part using grey Taguchi method. Mater Des 30:4243–4252. https://doi.org/10.1016/j.matdes.2009.04.030

    Article  Google Scholar 

  66. Berumen S, Bechmann F, Lindner S et al (2010) Quality control of laser- and powder bed-based Additive Manufacturing (AM) technologies. Phys Procedia 5:617–622. https://doi.org/10.1016/j.phpro.2010.08.089

    Article  Google Scholar 

  67. Barua S, Sparks T, Liou F (2011) Development of low-cost imaging system for laser metal deposition processes. Rapid Prototyp J 17:203–210. https://doi.org/10.1108/13552541111124789

    Article  Google Scholar 

  68. Yasa E, Deckers J, Kruth JP (2011) The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts. Rapid Prototyp J 17:312–327. https://doi.org/10.1108/13552541111156450

    Article  Google Scholar 

  69. Spierings AB, Herres N, Levy G (2011) Influence of the particle size distribution on surface quality and mechanical properties in AM steel parts. Rapid Prototyp J 17:195–202. https://doi.org/10.1108/13552541111124770

    Article  Google Scholar 

  70. Hu XD, Kong FZ, Yao JH (2010) Development of monitoring and control system for laser remanufacturing. Appl Mech Mater 44–47:81–85. https://doi.org/10.4028/www.scientific.net/AMM.44-47.81

    Article  Google Scholar 

  71. Rodriguez E, Medina F, Espalin D, Terrazas C, Muse D, Henry C, Wicker RB (2012) Integration of a thermal imaging feedback control system in electron beam melting. WM Keck Center for 3D Innovation, University of Texas at El Paso, pp 945–961

  72. Schwerdtfeger J, Singer RF, Körner C (2012) In situ flaw detection by IR-imaging during electron beam melting. Rapid Prototyp J 18:259–263. https://doi.org/10.1108/13552541211231572

    Article  Google Scholar 

  73. Balu P, Leggett P, Kovacevic R (2012) Parametric study on a coaxial multi-material powder flow in laser-based powder deposition process. J Mater Process Technol 212:1598–1610. https://doi.org/10.1016/j.jmatprotec.2012.02.020

    Article  Google Scholar 

  74. Jariwala AS, Schwerzel RE, Werve M, Rosen DW (2012) Two-dimensional real-time interferometric monitoring system for exposure controlled projection lithography. In: International symposium on flexible automation, vol 45110. American Society of Mechanical Engineers, pp 457–464

  75. Song L, Bagavath-Singh V, Dutta B, Mazumder J (2012) Control of melt pool temperature and deposition height during direct metal deposition process. Int J Adv Manuf Technol 58:247–256. https://doi.org/10.1007/s00170-011-3395-2

    Article  Google Scholar 

  76. Karnati S, Matta N, Sparks T, Liou F (2013) Vision-based Process Monitoring for Laser Metal Deposition Processes Sreekar Karnati*, Niroop Matta*, Todd Sparks*, Frank Liou* *Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, 65409. 1340–1350

  77. Abdul Aziz MS, Furumoto T, Kuriyama K et al (2013) Residual stress and deformation of consolidated structure obtained by layered manufacturing process. J Adv Mech Des Syst Manuf 7:244–256. https://doi.org/10.1299/jamdsm.7.244

    Article  Google Scholar 

  78. Chivel Y (2013) Optical in-process temperature monitoring of selective laser melting. Phys Procedia 41:904–910. https://doi.org/10.1016/j.phpro.2013.03.165

    Article  Google Scholar 

  79. Furumoto T, Ueda T, Alkahari MR, Hosokawa A (2013) Investigation of laser consolidation process for metal powder by two-color pyrometer and high-speed video camera. CIRP Ann Manuf Technol 62:223–226. https://doi.org/10.1016/j.cirp.2013.03.032

    Article  Google Scholar 

  80. Bi G, Sun CN, Gasser A (2013) Study on influential factors for process monitoring and control in laser aided additive manufacturing. J Mater Process Technol 213:463–468. https://doi.org/10.1016/j.jmatprotec.2012.10.006

    Article  Google Scholar 

  81. Salmi M, Paloheimo KS, Tuomi J et al (2013) Accuracy of medical models made by additive manufacturing (rapid manufacturing). J Cranio-Maxillofacial Surg 41:603–609. https://doi.org/10.1016/j.jcms.2012.11.041

    Article  Google Scholar 

  82. Faes M, Abbeloos W, Vogeler F, Valkenaers H, Coppens K, Goedemé T, Ferraris E (2016) Process monitoring of extrusion based 3D printing via laser scanning. arXiv:1612.02219

  83. Grünberger T, Domröse R (2014) Optical in-process monitoring of direct metal laser sintering (DMLS). Laser Tech J 11:40–42. https://doi.org/10.1002/latj.201400026

    Article  Google Scholar 

  84. Barua S, Liou F, Newkirk J, Sparks T (2014) Vision-based defect detection in laser metal deposition process. Rapid Prototyp J 20:77–86. https://doi.org/10.1108/RPJ-04-2012-0036

    Article  Google Scholar 

  85. Slotwinski JA, Garboczi EJ, Hebenstreit KM (2014) Porosity measurements and analysis for metal additive manufacturing process control. J Res Natl Inst Stand Technol 119:494. https://doi.org/10.6028/jres.119.019

    Article  Google Scholar 

  86. Obaton A-F, Lê M-Q, Prezza V et al (2018) Investigation of new volumetric non-destructive techniques to characterise additive manufacturing parts. Weld World. https://doi.org/10.1007/s40194-018-0593-7

    Article  Google Scholar 

  87. Gibson I, Rosen D, Stucker B (2015) Directed energy deposition processes. In: Additive manufacturing technologies

  88. Denlinger ER, Heigel JC, Michaleris P, Palmer TA (2015) Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys. J Mater Process Technol 215:123–131. https://doi.org/10.1016/j.jmatprotec.2014.07.030

    Article  Google Scholar 

  89. Heigel JC, Michaleris P, Palmer TA (2015) In situ monitoring and characterization of distortion during laser cladding of Inconel® 625. J Mater Process Technol 220:135–145. https://doi.org/10.1016/j.jmatprotec.2014.12.029

    Article  Google Scholar 

  90. Grimm T, Wiora G, Witt G (2015) Characterization of typical surface effects in additive manufacturing with confocal microscopy. Surf Topogr Metrol Prop. https://doi.org/10.1088/2051-672X/3/1/014001

    Article  Google Scholar 

  91. Foster B, Reutzel E, Nassar A, Hall B, Brown S, Dickman C (2015) Optical, layer wise monitoring of powder bed fusion. In: Solid freeform fabrication symposium, Austin, TX, pp 10–12

  92. Sitthi-Amorn P, Ramos JE, Wang Y et al (2015) MultiFab: a machine vision assisted platform for multi-material 3D printing. ACM Trans Graph. https://doi.org/10.1145/2766962

    Article  Google Scholar 

  93. Rao PK, Liu J, Roberson D et al (2015) Online real-time quality monitoring in additive manufacturing processes using heterogeneous sensors. J Manuf Sci Eng Trans ASME 137:1–12. https://doi.org/10.1115/1.4029823

    Article  Google Scholar 

  94. Wu H, Wang Y, Yu Z (2016) In situ monitoring of FDM machine condition via acoustic emission. Int J Adv Manuf Technol 84:1483–1495. https://doi.org/10.1007/s00170-015-7809-4

    Article  Google Scholar 

  95. Seppala JE, Migler KD (2016) Infrared thermography of welding zones produced by polymer extrusion additive manufacturing. Addit Manuf 12:71–76. https://doi.org/10.1016/j.addma.2016.06.007

    Article  Google Scholar 

  96. Corbin DJ, Nassar AR, Reutzel EW, Kistler NA, Beese AM, Michaleris P (2016) Impact of directed energy deposition parameters on mechanical distortion of laser deposited Ti-6Al-4V. In: Solid freeform fabrication: Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference Reviewed Paper, pp 670–679

  97. Devesse W, De Baere D, Hinderdael M, Guillaume P (2016) High resolution temperature estimation during laser cladding of stainless steel. Phys Procedia 83:1253–1260. https://doi.org/10.1016/j.phpro.2016.08.132

    Article  Google Scholar 

  98. Zhao X, Rosen DW (2016) Simulation study on evolutionary cycle to cycle time control of exposure controlled projection lithography. Rapid Prototyp J 22:456–464. https://doi.org/10.1108/RPJ-01-2015-0008

    Article  Google Scholar 

  99. Türeyen EB, Karpat Y, Çakmakci M (2016) Development of an iterative learning controller for polymer based micro-stereolithography prototyping systems. Proc Am Control Conf 2016-July:852–857. https://doi.org/10.1109/ACC.2016.7525020

  100. Barone S, Casinelli M, Frascaria M et al (2016) Interactive design of dental implant placements through CAD-CAM technologies: from 3D imaging to additive manufacturing. Int J Interact Des Manuf 10:105–117. https://doi.org/10.1007/s12008-014-0229-0

    Article  Google Scholar 

  101. Palanivel S, Dutt AK, Faierson EJ, Mishra RS (2016) Spatially dependent properties in a laser additive manufactured Ti-6Al-4V component. Mater Sci Eng A 654:39–52. https://doi.org/10.1016/j.msea.2015.12.021

    Article  Google Scholar 

  102. Stavroulakis PI, Leach RK (2016) Invited review article: review of post-process optical form metrology for industrial-grade metal additive manufactured parts ARTICLES YOU MAY BE INTERESTED IN invited review article: review of post-process optical form metrology for industrial-grade metal additive manufactured parts. Rev Sci Instrum 1706:41101. https://doi.org/10.1063/1.4944983

    Article  Google Scholar 

  103. Du Plessis A, Le Roux SG, Steyn F (2016) Quality investigation of 3D printer filament using laboratory X-ray tomography. 3D Print Addit Manuf 3:262–267. https://doi.org/10.1089/3dp.2016.0011

    Article  Google Scholar 

  104. Szost BA, Terzi S, Martina F et al (2016) A comparative study of additive manufacturing techniques: residual stress and microstructural analysis of CLAD and WAAM printed Ti-6Al-4V components. Mater Des 89:559–567. https://doi.org/10.1016/j.matdes.2015.09.115

    Article  Google Scholar 

  105. Xu F, Madhaven N, Dhokia V, et al (2016) Multi-Sensor System for Wire-Fed Additive Manufacture of Titanium Alloys. 26th Int Conf Flex Autom Intell Manuf (FAIM 2016) 44:Article in Press

  106. Chartier T, Dupas C, Geffroy PM et al (2017) Influence of irradiation parameters on the polymerization of ceramic reactive suspensions for stereolithography. J Eur Ceram Soc 37:4431–4436. https://doi.org/10.1016/j.jeurceramsoc.2017.05.050

    Article  Google Scholar 

  107. Holzmond O, Li X (2017) In situ real time defect detection of 3D printed parts. Addit Manuf 17:135–142. https://doi.org/10.1016/j.addma.2017.08.003

    Article  Google Scholar 

  108. Nuchitprasitchai S, Roggemann M, Pearce JM (2017) Factors effecting real-time optical monitoring of fused filament 3D printing. Prog Addit Manuf. https://doi.org/10.1007/s40964-017-0027-x

    Article  Google Scholar 

  109. Wu H, Yu Z, Wang Y (2017) Real-time FDM machine condition monitoring and diagnosis based on acoustic emission and hidden semi-Markov model. Int J Adv Manuf Technol 90:2027–2036. https://doi.org/10.1007/s00170-016-9548-6

    Article  Google Scholar 

  110. Gouge M, Michael P (2017) Thermo-mechanical modeling of additive manufacturing. Butterworth-Heinemann

  111. Li C, Liu ZY, Fang XY, Guo YB (2018) Residual stress in metal additive manufacturing. Procedia CIRP 71:348–353. https://doi.org/10.1016/j.procir.2018.05.039

    Article  Google Scholar 

  112. Hooper PA (2018) Melt pool temperature and cooling rates in laser powder bed fusion. Addit Manuf 22:548–559. https://doi.org/10.1016/j.addma.2018.05.032

    Article  Google Scholar 

  113. Khanzadeh M, Chowdhury S, Tschopp MA et al (2019) In-situ monitoring of melt pool images for porosity prediction in directed energy deposition processes. IISE Trans 51:437–455. https://doi.org/10.1080/24725854.2017.1417656

    Article  Google Scholar 

  114. Delli U, Chang S (2018) Automated process monitoring in 3D printing using supervised machine learning. Procedia Manuf 26:865–870. https://doi.org/10.1016/j.promfg.2018.07.111

    Article  Google Scholar 

  115. Makvandi P, Esposito Corcione C, Paladini F et al (2018) Antimicrobial modified hydroxyapatite composite dental bite by stereolithography. Polym Adv Technol 29:364–371. https://doi.org/10.1002/pat.4123

    Article  Google Scholar 

  116. Lun C, Leung A, Marussi S et al (2018) In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing. Nat Commun. https://doi.org/10.1038/s41467-018-03734-7

    Article  Google Scholar 

  117. Aminzadeh M, Kurfess TR (2019) Online quality inspection using Bayesian classification in powder-bed additive manufacturing from high-resolution visual camera images. J Intell Manuf 30:2505–2523. https://doi.org/10.1007/s10845-018-1412-0

    Article  Google Scholar 

  118. Grant OL, Alameen MB, Carazzone JR, Higgs CF, Cordero ZC (2018) Mitigating distortion during sintering of binder jet printed ceramics. In: Solid freeform fabrication 2018: Proceedings of the 29th annual international solid freeform fabrication symposium – an additive manufacturing conference

  119. Parab ND, Barnes JE, Zhao C et al (2019) Real time observation of binder jetting printing process using high-speed X-ray imaging. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-38862-7

    Article  Google Scholar 

  120. Kousiatza C, Tzetzis D, Karalekas D (2019) In-situ characterization of 3D printed continuous fiber reinforced composites: a methodological study using fiber Bragg grating sensors. Compos Sci Technol 174:134–141. https://doi.org/10.1016/j.compscitech.2019.02.008

    Article  Google Scholar 

  121. Hu H, He K, Zhong T, Hong Y (2019) Fault diagnosis of FDM process based on support vector machine (SVM). Rapid Prototyp J 26:330–348. https://doi.org/10.1108/RPJ-05-2019-0121

    Article  Google Scholar 

  122. Livings RA, Biedermann EJ, Wang C, Chung T, James S, Waller JM, Volk S, Krishnan A, Collins, S (2020) Nondestructive evaluation of additive manufactured parts using process compensated resonance testing. In: Shamsaei N, Daniewicz S, Hrabe N, Beretta S, Waller J, Seif M (eds) Structural integrity of additive manufactured Parts, pp 165–205

  123. Brierly, B. Dutton, M. V. Felice, K. Milne, N. Turner SE (2015) NDE as an Enabler for Additive Manufacturing. In: 54th Annual Conference of the British Institute of Non-destructive Testing

  124. Everton S, Dickens P, Tuck C, Dutton B (2018) Using laser ultrasound to detect subsurface defects in metal laser powder bed fusion components. JOM 70:378–383. https://doi.org/10.1007/s11837-017-2661-7

    Article  Google Scholar 

  125. Jiménez M, Romero L, Dom-Nguez IA et al (2019) Additive manufacturing technologies: an overview about 3D printing methods and future prospects. Complexity. https://doi.org/10.1155/2019/9656938

    Article  Google Scholar 

  126. Villarraga-Gómez H, Peitsch CM, Ramsey A, Smith ST (2018) The role of computed tomography in additive manufacturing. In: 2018 ASPE and euspen summer topical meeting: advancing precision in additive manufacturing, pp 201–209

  127. Waller JMBHPERB (2015) Summary of NDE of additive manufacturing efforts in NASA. In: AIP Conferenc Proceedings 1650

  128. Biswal R, Zhang X, Syed AK et al (2019) Criticality of porosity defects on the fatigue performance of wire + arc additive manufactured titanium alloy. Int J Fatigue 122:208–217. https://doi.org/10.1016/j.ijfatigue.2019.01.017

    Article  Google Scholar 

  129. Charalampous P, Kostavelis I, Tzovaras D (2020) Non-destructive quality control methods in additive manufacturing: a survey. Rapid Prototyp J 26:777–790. https://doi.org/10.1108/RPJ-08-2019-0224

    Article  Google Scholar 

  130. Szabo I, Sun J, Feng G et al (2017) Automated defect recognition as a critical element of a three dimensional X-ray computed tomography imaging-based smart non-destructive testing technique in additive manufacturing of near net-shape parts. Appl Sci 7:1–14. https://doi.org/10.3390/app7111156

    Article  Google Scholar 

  131. Chauveau D (2018) Review of NDT and process monitoring techniques usable to produce high-quality parts by welding or additive manufacturing. Weld World. https://doi.org/10.1007/s40194-018-0609-3

    Article  Google Scholar 

  132. Kudzal A, McWilliams B, Hofmeister C et al (2017) Effect of scan pattern on the microstructure and mechanical properties of Powder Bed Fusion additive manufactured 17–4 stainless steel. Mater Des 133:205–215. https://doi.org/10.1016/j.matdes.2017.07.047

    Article  Google Scholar 

  133. Mandache C (2019) Overview of non-destructive evaluation techniques for metal-based additive manufacturing. Mater Sci Technol (United Kingdom) 35:1007–1015. https://doi.org/10.1080/02670836.2019.1596370

    Article  Google Scholar 

  134. Lhachemi H, Malik A, Shorten R (2019) Augmented reality, cyber-physical systems, and feedback control for additive manufacturing: a review. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2907287

    Article  Google Scholar 

  135. Zhu Y, Wu Z, Hartley WD, Sietins JM, Williams CB, Hang ZY (2020) Unraveling pore evolution in post-processing of binder jetting materials: X-ray computed tomography, computer vision, and machine learning. Addit Manuf 34:101183

  136. Chaudhury P (2017) Testing and qualifications in metal additive manufacturing for airworthiness. In: Proceedings of the 2017 Aircraft Airworthiness and Sustainment

  137. Hirsch M, Patel R, Li W et al (2017) Assessing the capability of in-situ nondestructive analysis during layer based additive manufacture. Addit Manuf 13:135–142. https://doi.org/10.1016/j.addma.2016.10.004

    Article  Google Scholar 

  138. Rummel WD (1999) Transfer of POD performance capabilities from simple shapes to complex shapes. Rev Prog Quant Nondestruct Eval 18:2305–2310. https://doi.org/10.1007/978-1-4615-4791-4_295

    Article  Google Scholar 

  139. Dobmann G, Cioclov D, Kurz JH (2007) The role of probabilistic approaches in ndt defect-detection, -classification, and -sizing. Weld World 51(5):9–15

  140. Berens AP, Hovey PW (1981) Evaluation of NDE reliability characterization (USAF Report No. AFWAL-TR-81–4160). I:

  141. Annis C, Gandossi L, Martin O (2013) Optimal sample size for probability of detection curves. Nucl Eng Des 262:98–105

  142. Rummel WD (2010) Nondestructive inspection reliability - history, status and future path. In: 18th world conference on nondestructive testing 16-20 April 2010, Durban, South Africa

  143. Thompson RB, Brasche L, Forsyth D, Lindgren E, Swindell P, Winfree W (2009) Recent advances in model-assisted probability of detection. In: 4th European-American Workshop on Reliability of NDE, Center for nondestructive evaluation conference papers, posters and presentations

  144. Calmon P, Chapuis B, Jenson F, Sjerve E (2016) The use of simulation in POD curves estimation: an overview of the IIW best practices proposal. In: 19th World conference on non-destructive testing, Munich, Germany

  145. Koskinen T, Virkkunen I (2018) Hit/Miss POD with model assisted and emulated flaws. In: 12th European conference on non-destructive testing (ECNDT 2018), Gothenburg 2018, June 11-15 (ECNDT 2018)

  146. Kanzler D (2017) How reliable are the results of my NDT process? A scientific answer to a practical everyday question. In: ESIS TC24 workshop: Integrity of railway structures

  147. Kanzler D, Müller C (2016) Evaluating RT systems with a new POD approach. 19th World Conf Non-destructive Test 8

  148. Kanzler D, Müller C (2016) How much information do we need? A reflection of the correct use of real defects in POD-evaluations. AIP Conf Proc. https://doi.org/10.1063/1.4940652

    Article  Google Scholar 

  149. Esmaeilizadeh R, Keshavarzkermani A, Ali U et al (2021) On the effect of laser powder-bed fusion process parameters on quasi-static and fatigue behaviour of Hastelloy X: a microstructure/defect interaction study. Addit Manuf 38:101805. https://doi.org/10.1016/j.addma.2020.101805

    Article  Google Scholar 

  150. Stutzman CB, Nassar AR, Reutzel EW (2018) Multi-sensor investigations of optical emissions and their relations to directed energy deposition processes and quality. Addit Manuf 21:333–339. https://doi.org/10.1016/j.addma.2018.03.017

    Article  Google Scholar 

  151. Francis D (2013) Non-destructive evaluation (NDE) of composites: introduction to shearography. Non-destructive evaluation (NDE) of polymer matrix composites: techniques and applications. Elsevier Ltd, pp 56–83

    Chapter  Google Scholar 

  152. Yang Z, Jin L, Yan Y, Mei Y (2018) Filament breakage monitoring in fused deposition modeling using acoustic emission technique. Sensors (Switzerland) 18:1–16. https://doi.org/10.3390/s18030749

    Article  Google Scholar 

  153. Bhavsar P, Sharma B, Moscoso-Kingsley W, Madhavan V (2020) Detecting first layer bond quality during FDM 3D printing using a discrete wavelet energy approach. Procedia Manuf 48:718–724. https://doi.org/10.1016/j.promfg.2020.05.104

    Article  Google Scholar 

  154. Liu J, Hu Y, Wu B, Wang Y (2018) An improved fault diagnosis approach for FDM process with acoustic emission. J Manuf Process 35:570–579. https://doi.org/10.1016/j.jmapro.2018.08.038

    Article  Google Scholar 

  155. Tlegenov Y, Wong YS, Hong GS (2017) A dynamic model for nozzle clog monitoring in fused deposition modelling. Rapid Prototyp J 23:391–400. https://doi.org/10.1108/RPJ-04-2016-0054

    Article  Google Scholar 

  156. Tlegenov Y, Hong GS, Lu WF (2018) Nozzle condition monitoring in 3D printing. Robot Comput Integr Manuf 54:45–55. https://doi.org/10.1016/j.rcim.2018.05.010

    Article  Google Scholar 

  157. Baumann F, Roller D (2016) Vision based error detection for 3D printing processes. MATEC Web Conf 59:3–9. https://doi.org/10.1051/matecconf/20165906003

    Article  Google Scholar 

  158. Chen R, He W, Xie H, Liu S (2021) Monitoring the strain and stress in FDM printed lamellae by using Fiber Bragg Grating sensors. Polym Test 93:106944. https://doi.org/10.1016/j.polymertesting.2020.106944

    Article  Google Scholar 

  159. Casavola C, Cazzato A, Moramarco V, Pappalettera G (2017) Residual stress measurement in Fused Deposition Modelling parts. Polym Test 58:249–255. https://doi.org/10.1016/j.polymertesting.2017.01.003

    Article  Google Scholar 

  160. Hafkamp T, van Baars G, de Jager B, Etman P (2018) A feasibility study on process monitoring and control in vat photopolymerization of ceramics. Mechatronics 56:220–241. https://doi.org/10.1016/j.mechatronics.2018.02.006

    Article  Google Scholar 

  161. Inoue K, Komatsu S, Trinh XA et al (2005) Local deformation in photo-crosslinked polymer blends monitored by Mach-Zehnder interferometry. J Polym Sci Part B Polym Phys 43:2898–2913. https://doi.org/10.1002/polb.20593

    Article  Google Scholar 

  162. Dudi O, Grubbs WT (1999) Laser interferometric technique for measuring polymer cure kinetics. J Appl Polym Sci 74:2133–2142. https://doi.org/10.1002/(SICI)1097-4628(19991128)74:9%3c2133::AID-APP3%3e3.0.CO;2-X

    Article  Google Scholar 

  163. Dietrich K, Diller J, Dubiez-Le Goff S et al (2020) The influence of oxygen on the chemical composition and mechanical properties of Ti-6Al-4V during laser powder bed fusion (L-PBF). Addit Manuf 32:100980. https://doi.org/10.1016/j.addma.2019.100980

    Article  Google Scholar 

  164. Mani M, Lane BM, Donmez MA et al (2017) A review on measurement science needs for real-time control of additive manufacturing metal powder bed fusion processes. Int J Prod Res 55:1400–1418. https://doi.org/10.1080/00207543.2016.1223378

    Article  Google Scholar 

  165. Lane B, Whitenton E, Moylan S (2016) Multiple sensor detection of process phenomena in laser powder bed fusion. Thermosense Therm Infrared Appl XXXVIII 9861:986104. https://doi.org/10.1117/12.2224390

    Article  Google Scholar 

  166. Dunbar AJ, Denlinger ER, Heigel J et al (2016) Development of experimental method for in situ distortion and temperature measurements during the laser powder bed fusion additive manufacturing process. Addit Manuf 12:25–30. https://doi.org/10.1016/j.addma.2016.04.007

    Article  Google Scholar 

  167. Craeghs T, Clijsters S, Yasa E et al (2011) Determination of geometrical factors in Layerwise Laser Melting using optical process monitoring. Opt Lasers Eng 49:1440–1446. https://doi.org/10.1016/j.optlaseng.2011.06.016

    Article  Google Scholar 

  168. Criales LE, Arısoy YM, Lane B et al (2017) Laser powder bed fusion of nickel alloy 625: Experimental investigations of effects of process parameters on melt pool size and shape with spatter analysis. Int J Mach Tools Manuf 121:22–36. https://doi.org/10.1016/j.ijmachtools.2017.03.004

    Article  Google Scholar 

  169. Heigel JC, Lane BM (2018) Measurement of the melt pool length during single scan tracks in a commercial laser powder bed fusion process. J Manuf Sci Eng Trans ASME 140:1–7. https://doi.org/10.1115/1.4037571

    Article  Google Scholar 

  170. Zhao C, Fezzaa K, Cunningham RW et al (2017) Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-03761-2

    Article  Google Scholar 

  171. Forien JB, Calta NP, DePond PJ et al (2020) Detecting keyhole pore defects and monitoring process signatures during laser powder bed fusion: a correlation between in situ pyrometry and ex situ X-ray radiography. Addit Manuf 35:101336. https://doi.org/10.1016/j.addma.2020.101336

    Article  Google Scholar 

  172. Wang X, Chou K (2019) The effects of stress relieving heat treatment on the microstructure and residual stress of Inconel 718 fabricated by laser metal powder bed fusion additive manufacturing process. J Manuf Process 48:154–163. https://doi.org/10.1016/j.jmapro.2019.10.027

    Article  Google Scholar 

  173. Barui S, Ding H, Wang Z et al (2020) Probing ink−powder interactions during 3D binder jet printing using time-resolved X-ray imaging. ACS Appl Mater Interfaces 12:34264. https://doi.org/10.1021/acsami.0c03572

    Article  Google Scholar 

  174. Lores A, Azurmendi N, Agote I, Zuza E (2019) A review on recent developments in binder jetting metal additive manufacturing: materials and process characteristics. Powder Metall 62:267–296. https://doi.org/10.1080/00325899.2019.1669299

    Article  Google Scholar 

  175. Wang T, Kwok TH, Zhou C (2017) In-situ droplet inspection and control system for liquid metal jet 3D printing process. Procedia Manuf 10:968–981. https://doi.org/10.1016/j.promfg.2017.07.088

    Article  Google Scholar 

  176. Meisel NA, Dillard DA, Williams CB (2018) Impact of material concentration and distribution on composite parts manufactured via multi-material jetting. Rapid Prototyp J 24:872–879. https://doi.org/10.1108/RPJ-01-2017-0005

    Article  Google Scholar 

  177. Whiting J, Springer A, Sciammarella F (2018) Real-time acoustic emission monitoring of powder mass flow rate for directed energy deposition. Addit Manuf 23:312–318. https://doi.org/10.1016/j.addma.2018.08.015

    Article  Google Scholar 

  178. Hsu HW, Lo YL, Lee MH (2019) Vision-based inspection system for cladding height measurement in Direct Energy Deposition (DED). Addit Manuf 27:372–378. https://doi.org/10.1016/j.addma.2019.03.017

    Article  Google Scholar 

  179. Sampson R, Lancaster R, Sutcliffe M et al (2021) The influence of key process parameters on melt pool geometry in direct energy deposition additive manufacturing systems. Opt Laser Technol 134:106609. https://doi.org/10.1016/j.optlastec.2020.106609

    Article  Google Scholar 

  180. Sampson R, Lancaster R, Sutcliffe M, Carswell D, Hauser C, Barras J (2020) An improved methodology of melt pool monitoring of direct energy deposition processes. Opt Laser Technol 127:106194

  181. Zhang X, Shen W, Suresh V et al (2021) In-situ monitoring of direct energy deposition via structured light system and its application in remanufacturing industry. Int J Adv Manuf Technol 116:959–974

    Article  Google Scholar 

  182. Li J, Duan Q, Hou J et al (2020) In-situ monitoring of substrate deformation in directed energy deposition process using the coherent gradient sensing method. Addit Manuf 36:101547. https://doi.org/10.1016/j.addma.2020.101547

    Article  Google Scholar 

  183. Cawley JD, Liu Z, Mou J, Heuer AH (1998) Materials Issues in Laminated Object Manufacturing of Powder-Based Systems. In: 1998 international solid freeform fabrication symposium

  184. Ji B, Zhang Q, Cao J et al (2021) Non-contact detection of delamination in stainless steel/carbon steel composites with laser ultrasonic. Optik (Stuttg) 226:165893. https://doi.org/10.1016/j.ijleo.2020.165893

    Article  Google Scholar 

  185. Gibson I, Rosen D, Stucker B (2010) Sheet lamination processes. Additive manufacturing technologies: rapid prototyping to direct digital manufacturing. Springer US, Boston, pp 223–252

    Chapter  Google Scholar 

  186. Goldammer M (2006) Active Thermography for Dimensional Measurements on Gas Turbine Components. Proc Eur Conf non-destructive Test ECNDT 1–9

  187. Brandl E, Heckenberger U, Holzinger V, Buchbinder D (2012) Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater Des 34:159–169. https://doi.org/10.1016/j.matdes.2011.07.067

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kr. Mishra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreeraj, P.R., Mishra, S.K. & Singh, P.K. A review on non-destructive evaluation and characterization of additively manufactured components. Prog Addit Manuf 7, 225–248 (2022). https://doi.org/10.1007/s40964-021-00227-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40964-021-00227-w

Keywords

Navigation