Srivatsan TS, Sudarshan TS (2015) Additive manufacturing: innovations, advances, and applications. CRC Press, Boca Raton
Book
Google Scholar
Turner BN, Scott AG (2015) A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyp J 21:250–261
Article
Google Scholar
Elkins K, Nordby H, Janak C, Gray RW, Bohn JH, Baird DG (1997) Soft elastomers for fused deposition modeling., The University of Texas in Austin, Laboratory for Freeform Fabrication and University of Texas at Austin, pp 441
Bellini A, Guceri S, Bertoldi M (2004) Liquefier dynamics in fused deposition. J Manuf Sci E-T ASME 126:237–246
Article
Google Scholar
Ramanath HS, Chua CK, Leong KF, Shah KD (2008) Melt flow behaviour of poly-epsilon-caprolactone in fused deposition modelling. J Mater Sci Mater Med 19:2541–2550
Article
Google Scholar
Michaeli W (2003) Extrusion dies for plastics and rubber. Carl Hanser Verlag GmbH & Co. KG, Göttingen
Book
Google Scholar
Yardimci MA, Guceri SI, Danforth SC (1997) Thermal analysis of fused deposition. August 11–13, Austin, TX, The University of Texas at Austin
Venkataraman N, Rangarajan S, Matthewson MJ, Harper B, Safari A, Danforth SC, Wu G, Langrana N, Guceri S, Yardimci A (2000) Feedstock material property—process relationships in fused deposition of ceramics (FDC). Rapid Prototyp J 6:244–253
Article
Google Scholar
NINJAFLEX®: the market leading flexible filament. https://ninjatek.com/products/filaments/ninjaflex/. Accessed 29 Nov 2017
PolyFlex. http://www.polymaker.com/shop/polyflex/. Accessed 29 Nov 2017
FlexSolid. http://www.madesolid.com/. Accessed 29 Nov 2017
Saari M, Galla M, Cox B, Krueger P, Cohen A, Richer E (2015) Additive manufacturing of soft and composite parts from thermoplastic elastomers. August 10–12, Austin, TX, The University of Texas at Austin, 949–958
TITAN Robotics. THE ATLAS. http://www.titan3drobotics.com/atlas/. Accessed 9 Oct 2018
Linthicum T, Simpson DS, Linthicum B et al, inventors, inventor; Sculptify LLC, assignee., assignee (2014) Extrusion system for additive manufacturing and 3-d printing. US patent US20150321419A1. Pending
Whyman S, Arif KM, Potgieter J (2018) Design and development of an extrusion system for 3D printing biopolymer pellets. Int J Adv Manuf Technol 96:3417–3428
Article
Google Scholar
Woern AL, Byard DJ, Oakley RB, Fiedler MJ, Snabes SL, Pearce JM (2018) Fused particle fabrication 3-D printing: recycled materials’ optimization and mechanical properties. Materials 11:1413
Article
Google Scholar
Moreno Nieto D, Casal López V, Molina SI (2018) Large-format polymeric pellet-based additive manufacturing for the naval industry. Addit Manuf 23:79–85
Article
Google Scholar
Ajinjeru C, Kishore V, Liu P, Lindahl J, Hassen AA, Kunc V, Post B, Love L, Duty C (2018) Determination of melt processing conditions for high performance amorphous thermoplastics for large format additive manufacturing. Addit Manuf 21:125–132
Article
Google Scholar
Singamneni S, Smith D, LeGuen M, Truong D (2018) Extrusion 3D printing of polybutyrate-adipate-terephthalate-polymer composites in the pellet form. Polymers 10:922
Article
Google Scholar
Bschaden BS (2014) Developing design guidelines for improved gecko inspired dry adhesive. Dissertation, University of Alberta
Sameoto D (2017) Manufacturing approaches and applications for bioinspired dry adhesives. In: Heepe L, Xue L, Gord S (eds) Bio-inspired structured adhesives. Springer, Cham, pp 221–244
Chapter
Google Scholar
FILUSTRUDER. Available from: https://www.filastruder.com/products/filastruder-kit. Accessed 20 Mar 2018
Khondoker MAH, Sameoto D (2016) Design and characterization of a bi-material co-extruder for fused deposition modeling. November 11–17, Phoenix, AZ, USA, The American Society of Mechanical Engineers, IMECE2016-65330-9
Khondoker MAH, Sameoto D (2017) Printing with mechanically interlocked extrudates using a custom bi-extruder for fused deposition modelling. Rapid Prototyp J 24:921–934
Article
Google Scholar
Morton-Jones DH (1989) Polymer processing. Chapman and Hall, New York
Book
Google Scholar
Crawford RJ (1981) Plastics engineering. Butterworth-Heinemann, Oxford
Google Scholar
Stevens MJ, Covas JA (1995) Extruder principles and operation. Springer Science + Business Media, Berlin
Book
Google Scholar
Munson BR, Okiishi TH, Huebsch WW, Rothmayer AP (2013) Fundamentals of fluid mechanics. Wiley, New York
Google Scholar
Turner BN, Strong R, Gold SA (2014) A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp J 20:192–204
Article
Google Scholar
Hannan MW, Walker ID (2003) Kinematics and the implementation of an elephant’s trunk manipulator and other continuum style robots. J Rob Syst 20:45–63
Article
MATH
Google Scholar
Laschi C, Cianchetti M, Mazzolai B, Margheri L, Follador M, Dario P (2012) Soft robot arm inspired by the octopus. Adv Rob 26:709–727
Article
Google Scholar
Bobak M, Panagiotis P, Christoph K, Sophia W, Shepherd RF, Unmukt G, Jongmin S, Katia B, Walsh CJ, Whitesides GM (2014) Pneumatic networks for soft robotics that actuate rapidly. Adv Funct Mater 24:2163–2170
Article
Google Scholar
Pandey PM, Venkata Reddy N, Dhande SG (2003) Improvement of surface finish by staircase machining in fused deposition modeling. J Mater Process Technol 132:323–331
Article
Google Scholar
Wagner M, Chen T, Shea K (2017) Large shape transforming 4D auxetic structures. 3D Print Addit Manuf 4:133–142
Article
Google Scholar
Liu Y, Hu H (2010) A review on auxetic structures and polymeric materials. Sci Res Essays 5:1052–1063
Google Scholar
Rossiter J, Takashima K, Scarpa F, Walters P, Mukai T (2014) Shape memory polymer hexachiral auxetic structures with tunable stiffness. Smart Mater Struct 23:045007
Article
Google Scholar
Grima JN, Alderson A, Evans KE (2005) Auxetic behaviour from rotating rigid units. Phys Stat Solidi (b) 242:561–575
Article
Google Scholar
Dolla WJ, Fricke BA, Becker BR (2006) Structural and drug diffusion models of conventional and auxetic drug-eluting stents. J Med Devices 1:47–55
Article
Google Scholar
Cebeci T (1974) Laminar-free-convective-heat transfer from the outer surface of a vertical slender circular cylinder. September 3–7, Tokyo, Japan, Society of Heat Transfer of Japan, 15–19
Slic3r—G-code generator for 3D printers. http://slic3r.org/download. Accessed 17 Nov 2017
Raasch J, Ivey M, Aldrich D, Nobes DS, Ayranci C (2015) Characterization of polyurethane shape memory polymer processed by material extrusion additive manufacturing. Addit Manuf 8:132–141
Article
Google Scholar