Skip to main content
Log in

3D hybrid-material processing in selective laser melting: implementation of a selective coating system

  • Full Research Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

In 3D printing, the highest degree of freedom in design is achieved using powder bed techniques such as selective laser melting (SLM). The current disadvantage of this technique is that it allows only for the production of single material parts using standard setups. However, advanced designs and local requirements are met best by a tailored arrangement of different materials. A key challenge for multi-material powder bed SLM is the selective deposition of the materials in each layer. In this paper, a hybrid-material powder coating system for SLM machines was developed and installed in a SLM125 Realizer machine. First, the generic classification for the material arrangements in additive manufactured parts is reviewed and extended. Furthermore, existing principles and procedures used for multi-material coating, especially focusing on contamination-free processes are examined. Based on this, an advanced coating mechanism is developed and proof of principle is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Meiners W (1999) Direktes selektives Laser-Sintern einkomponentiger metallischer Werkstoffe. Als Ms. gedr. Berichte aus der Lasertechnik, Shaker, Aachen

    Google Scholar 

  2. Gibson I, Stucker B, Rosen DW (2010) Additive manufacturing technologies: rapid prototyping to direct digital manufacturing. Springer, Boston

    Book  Google Scholar 

  3. Gebhardt A, Hötter J-S (2016) Additive manufacturing: 3D printing for prototyping and manufacturing. Hanser Publications, Munich

    Book  Google Scholar 

  4. Herzog D, Seyda V, Wycisk E et al (2016) Additive manufacturing of metals. Acta Mater 117:371–392. https://doi.org/10.1016/J.ACTAMAT.2016.07.019

    Article  Google Scholar 

  5. DebRoy T, Wei HL, Zuback JS et al (2018) Additive manufacturing of metallic components—process, structure and properties. Prog Mater Sci 92:112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  Google Scholar 

  6. Fotovvati B, Namdari N, Dehghanghadikolaei A (2019) Fatigue performance of selective laser melted Ti6Al4 V components: state of the art. Mater Res Express 6(1):12002. https://doi.org/10.1088/2053-1591/aae10e

    Article  Google Scholar 

  7. Shipley H, McDonnell D, Culleton M et al (2018) Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4 V: a review. Int J Mach Tools Manuf 128:1–20. https://doi.org/10.1016/j.ijmachtools.2018.01.003

    Article  Google Scholar 

  8. Lehmhus D, Aumund-Kopp C, Petzoldt F et al (2016) Customized smartness: a survey on links between additive manufacturing and sensor integration. Proc Technol 26:284–301. https://doi.org/10.1016/j.protcy.2016.08.038

    Article  Google Scholar 

  9. Brueckner F, Mirko R, Michael M et al (2017) Fabrication of metallic multi-material components using laser metal deposition (Peer Reviewed)

  10. Vaezi M, Chianrabutra S, Mellor B et al (2013) Multiple material additive manufacturing—part 1: a review. Virtual Phys Prototyp 8(1):19–50. https://doi.org/10.1080/17452759.2013.778175

    Article  Google Scholar 

  11. Ott M (2012) Multimaterialverarbeitung bei der additiven strahl-und pulverbettbasierten Fertigung

  12. Anstaett C, Seidel C, Reinhart G (2017) Fabrication of 3D multi-material parts using laser-based powder bed fusion. Proc Solid Freeform Fabr Symp 28:1548–1556

    Google Scholar 

  13. Al-Jamal OM, Hinduja S, Li L (2008) Characteristics of the bond in Cu–H13 tool steel parts fabricated using SLM. CIRP Ann 57(1):239–242. https://doi.org/10.1016/j.cirp.2008.03.010

    Article  Google Scholar 

  14. Anstaett C, Schafnitzel M, Seidel C et al (2017) Laser-based powder bed fusion of 3D-Multi-material-parts of copper-chrome-zirconia and tool steel

  15. Kellner IN (2013) Materialsysteme für das pulverbettbasierte 3D-Drucken. Herbert Utz Verlag

  16. Lu X, Yang S, Evans JRG (2009) Microfeeding with different ultrasonic nozzle designs. Ultrasonics 49(6–7):514–521. https://doi.org/10.1016/j.ultras.2009.01.003

    Article  Google Scholar 

  17. Stichel T, Laumer T, Wittmann P et al (2015) Selective deposition of polymer powder by vibrating nozzles for laser beam melting. In: Proceedings of lasers in manufacturing conference

  18. Koopmann J, Voigt J, Niendorf T (2019) Additive manufacturing of a steel-ceramic multi-material by selective laser melting. Metal Mater Trans B. https://doi.org/10.1007/s11663-019-01523-1

    Article  Google Scholar 

  19. Binder M, Anstaett C, Reisch R et al (2018) Automated manufacturing of mechatronic parts by laser-based powder bed fusion. Proc Manuf 18:12–19. https://doi.org/10.1016/j.promfg.2018.11.002

    Article  Google Scholar 

  20. Chianrabutra S, Mellor BG, Yang S (2014) A dry powder material delivery device for multiple material additive manufacturing. Proc SFF Symp 25:36–48

    Google Scholar 

  21. Stichel T, Laumer T, Baumüller T et al (2014) Powder layer preparation using vibration-controlled capillary steel nozzles for additive manufacturing. Phys Proc 56:157–166. https://doi.org/10.1016/j.phpro.2014.08.158

    Article  Google Scholar 

  22. Jones JB (2013) Investigation of laser printing for 3D printing and additive manufacturing. PhD thesis, University of Warwick. http://wrap.warwick.ac.uk/59733/

  23. Lappo K, Wood K, Bourell D et al (2003) Discrete multiple material selective laser sintering (M2SLS): experimental study of part processing. Proc SFF Symp 109:109–119

    Google Scholar 

  24. Lappo K, Wood K, Bourell D et al (2003) Discrete multiple material selective laser sintering (M2SLS): nozzle design for powder delivery. Proc SFF Symp 109:93–108

    Google Scholar 

  25. Jasion GT, Shrimpton JS, Li Z et al (2013) On the bridging mechanism in vibration controlled dispensing of pharmaceutical powders from a micro hopper. Powder Technol 249:24–37. https://doi.org/10.1016/j.powtec.2013.07.027

    Article  Google Scholar 

  26. Jiang Y, Matsusaka S, Masuda H et al (2009) Development of measurement system for powder flowability based on vibrating capillary method. Powder Technol 188(3):242–247. https://doi.org/10.1016/j.powtec.2008.05.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Girnth.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest associated with this script.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girnth, S., Koopmann, J., Klawitter, G. et al. 3D hybrid-material processing in selective laser melting: implementation of a selective coating system. Prog Addit Manuf 4, 399–409 (2019). https://doi.org/10.1007/s40964-019-00082-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40964-019-00082-w

Keywords

Navigation