Skip to main content

Optimizing additive manufacturing parameters for the fused deposition modeling technology using a design of experiments

Abstract

Additive manufacturing (AM) technologies allow the manufacturing of parts directly from 3D models. These technologies, initially focused on rapid prototyping applications, have been increasingly considered for the production of final functional parts with high value added. The strengths and advantages of current AM processes include support for improved geometry for complex parts, reduction in tooling costs, material savings, and reduction in design to manufacturing lead-times. Along with those benefits, there are still production quality and performance factors, such as dimensional accuracy, strength of parts, and surface roughness, which may need to be improved depending on the product requirements. Therefore, there is a demand to increase the understanding of how AM production factors influence the final part parameters. This paper focuses on the investigation and optimization of material consumption, manufacturing time and dimensional accuracy (including linear error and surface flatness), for fused deposition modeling (FDM) technology. A design of experiments (DOE) is planned, executed and analyzed. Results indicate that print speed and the number of contours are the most important factors for the quality of the final part of the FDM process studied. Further research may consider the same approach, and the factors presented could be extended for AM technologies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Bonnard R, Mognol P, Hascoët J-Y (2010) A new digital chain for additive manufacturing processes, Virtual and Physical Prototyping. Virtual Phys Prototyp 5:75–88

    Article  Google Scholar 

  2. 2.

    ASTM subcommittee: F42.91 (2015) ASTM F2792-12a Standard Terminology for Additive Manufacturing Technologies

  3. 3.

    Bikas H, Stavropoulos P, Chryssolouris G (2016) Additive manufacturing methods and modelling approaches: a critical review. Int J Adv Manuf Technol 83:389–405. https://doi.org/10.1007/s00170-015-7576-2

    Article  Google Scholar 

  4. 4.

    Garg A, Tai K, Savalani MM (2014) State-of-the-art in empirical modelling of rapid prototyping processes. Rapid Prototyp J 20:164–178. https://doi.org/10.1108/RPJ-08-2012-0072

    Article  Google Scholar 

  5. 5.

    Mançanares CG, de S. Zancul, Cavalcante da Silva E, Cauchick Miguel J P a (2015) Additive manufacturing process selection based on parts’ selection criteria. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-015-7092-4

    Google Scholar 

  6. 6.

    Upcraft S, Fletcher R (2003) The rapid prototyping technologies. Assem Autom 23:318–330. https://doi.org/10.1108/01445150310698634

    Article  Google Scholar 

  7. 7.

    Wittbrodt BT, Glover AG, Laureto J et al (2013) Life-cycle economic analysis of distributed manufacturing with open-source 3-D printers. Mechatronics 23:713–726. https://doi.org/10.1016/j.mechatronics.2013.06.002

    Article  Google Scholar 

  8. 8.

    Berman B (2012) 3-D printing: The new industrial revolution. Bus Horiz 55:155–162. https://doi.org/10.1016/j.bushor.2011.11.003

    Article  Google Scholar 

  9. 9.

    Durão LFCS, Christ A, Anderl R, Schützer K, Zancul E (2016) Distributed manufacturing of spare parts based on additive manufacturing: use cases and technical aspects. Procedia CIRP 57:704–709

  10. 10.

    Ali F, Chowdary BV, Maharaj J (2014) Influence of some process parameters on build time, material consumption, and surface roughness of FDM processed parts: inferences based on the Taguchi design of experiments. In: Proceedings of the 2014 IAJC/ISAM joint international conference

  11. 11.

    Gajdoš I, Slota J (2013) Influence of printing conditions on structure in FDM prototypes. Tech Gaz 20:231–236. doi: 658.512.2:004.896

    Google Scholar 

  12. 12.

    Galantucci LM, Bodi I, Kacani J, Lavecchia F (2015) Analysis of dimensional performance for a 3D open-source printer based on fused deposition modeling technique. Procedia CIRP 28:82–87. https://doi.org/10.1016/j.procir.2015.04.014

    Article  Google Scholar 

  13. 13.

    Lužanin O, Movrin D, Plančak M (2014) Effect of layer thickness, deposition angle, and infill on maximum flexural force in fdm-built specimens. J Technol Plast 39:49–58

    Google Scholar 

  14. 14.

    Sood AK, Ohdar RK, Mahapatra SS (2010) Grey taguchi method for improving dimensional accuracy of FDM Process. AIMS Int Conf Value-based Manag 608–613

  15. 15.

    Sreedhar P, Manikandan CM, Jothi G (2012) Experimental investigation of surface roughness for fused deposition modeled part with different angular orientation. Int J Adv Manuf Technol 5:21–27

    Google Scholar 

  16. 16.

    Vijayaraghavan V, Garg A, Lam JSL et al (2014) Process characterisation of 3D-printed FDM components using improved evolutionary computational approach. Int J Adv Manuf Technol 781–793. https://doi.org/10.1007/s00170-014-6679-5

  17. 17.

    Anitha R, Arunachalam S, Radhakrishnan P (2001) Critical parameters influencing the quality of prototypes in fused deposition modelling. J Mater Process Technol 118:385–388. https://doi.org/10.1016/S0924-0136(01)00980-3

    Article  Google Scholar 

  18. 18.

    Wu W, Geng P, Li G et al (2015) Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS. Materials (Basel) 8:5834–5846. https://doi.org/10.3390/ma8095271

    Article  Google Scholar 

  19. 19.

    Mohamed OA, Masood SH, Bhowmik JL (2016) Optimization of fused deposition modeling process parameters for dimensional accuracy using I-optimality criterion. Measurement 81:174–196. https://doi.org/10.1007/s40436-014-0097-7

    Article  Google Scholar 

  20. 20.

    Moza Z, Kitsakis K, Kechagias J, Mastorakis N (2015) Optimizing dimensional accuracy of fused filament fabrication using taguchi design, In: Proceedings of the 14th international conference on instrumentation, measurement, circuits and systems (IMCAS '15), pp 110–114

  21. 21.

    Nancharaiah T, Raju DR, Raju VR (2010) An experimental investigation on surface quality and dimensional accuracy of FDM components. Int J Emerg Technol 1:106–111

    Google Scholar 

  22. 22.

    Sahu RK, Mahapatra SS, Sood AK (2013) A study on dimensional accuracy of fused deposition modeling (FDM) processed parts using fuzzy logic. J Manuf Sci Prod 13:183–197. https://doi.org/10.1515/jmsp-2013-0010

    Google Scholar 

  23. 23.

    Cochran JK, Lee KJ, McDowell D et al (2000) Low Density Monolithic Metal Honeycombs by Thermal Chemical Processing. Fourth Conf. Aerosp. Mater Process Environ Technol

  24. 24.

    Wu CFJ, Hamada MS (2009) Experiments—planning, analysis, and optimization, 2nd edn. Wiley, Hoboken

    MATH  Google Scholar 

  25. 25.

    Mohamed OA, Masood SH, Bhowmik JL (2015) Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv Manuf 3:42–53. https://doi.org/10.1007/s40436-014-0097-7

    Article  Google Scholar 

  26. 26.

    Dimitrov D, Wijck W, Van Schreve K, Beer N, De (2006) Investigating the achievable accuracy of three dimensional printing. Rapid Prototyp J 12:42–52. https://doi.org/10.1108/13552540610637264

    Article  Google Scholar 

  27. 27.

    Stratasys Direct Manufacturing How To Prepare STL Files (2016) https://www.stratasysdirect.com/resources/how-to-prepare-stl-files/. Accessed 16 Sep 2016

  28. 28.

    Bagsik A, Schöoppner V (2011) Mechanical properties of fused deposition modeling parts manufactured with ULTEM 9085. In: Proceedings 69th annual technical conference of the society of plastics engineers (ANTEC)  

  29. 29.

    Brajlih T, Valentan B, Balic J, Drstvensek I (2011) Speed and accuracy evaluation of additive manufacturing machines. Rapid Prototyp J 17:64–75. https://doi.org/10.1108/13552541111098644

    Article  Google Scholar 

  30. 30.

    Minetola P, Iuliano L, Marchiandi G (2016) Benchmarking of FDM machines through part quality using It grades. Proc CIRP 41:1027–1032. https://doi.org/10.1016/j.procir.2015.12.075

    Article  Google Scholar 

  31. 31.

    Geeentech (2016) Prusa Mendel I3. http://www.geeetech.com/wiki/index.php/Acrylic_Prusa_Mendel_I3. Accessed 16 Sep 2016

  32. 32.

    Swcopiadoras (2016) 3d Cloner ST. http://www.swcopiadoras.com.br/lista_equipamentos.php?CategoriaID=9. Accessed 16 Sep 2016

  33. 33.

    Deng Y, Cao SJ, Chen A, Guo Y (2016) The impact of manufacturing parameters on submicron particle emissions from a desktop 3D printer in the perspective of emission reduction. Build Environ 104:311–319. https://doi.org/10.1016/j.buildenv.2016.05.021

    Article  Google Scholar 

  34. 34.

    3D HUBS (2016) Best Printing Practices on Makerbot Replicator 2 and 2X. https://www.3dhubs.com/talk/thread/best-printing-practices-makerbot-replicator-2-and-2x. Accessed 21 Sep 2016

  35. 35.

    Verbatim (2016) 3D Filaments—FAQs and General Information. http://www.verbatim.com.au/technotes/3D_FAQs.pdf. Accessed 21 Sep 2016

  36. 36.

    Cruz Sanchez FA, Boudaoud H, Muller L, Camargo M (2014) Towards a standard experimental protocol for open source additive manufacturing: This paper proposes a benchmarking model for evaluating accuracy performance of 3D printers. Virtual Phys Prototyp 9:151–167. https://doi.org/10.1080/17452759.2014.919553

    Article  Google Scholar 

  37. 37.

    Simplify3D (2016) Simplify3D Software Tutorials

  38. 38.

    Tymrak BM, Kreiger M, Pearce JM (2014) Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Mater Des 58:242–246. https://doi.org/10.1016/j.matdes.2014.02.038

    Article  Google Scholar 

  39. 39.

    Garlotta D (2001) A literature review of Poly(Lactic Acid). J Polym Environ 9:63–84. https://doi.org/10.1023/A:1020200822435

    Article  Google Scholar 

  40. 40.

    Mee RW (2009) A comprehensive guide to factorial two-level experiments. Springer Dordrecht, Heidelberg

    Book  Google Scholar 

  41. 41.

    Le Bourhis F, Kerbrat O, Hascoet J-Y, Mognol P (2013) Sustainable manufacturing: evaluation and modeling of environmental impacts in additive manufacturing. Int J Adv Manuf Technol 69:1927–1939. https://doi.org/10.1007/s00170-013-5151-2

    Article  Google Scholar 

  42. 42.

    Saqib S, Urbanic J (2011) An experimental study to determine geometric and dimensional accuracy impact factors for fused deposition modelled parts. In: 4th Int Conf chang agil reconfigurable virtual prod. https://doi.org/10.1007/978-3-642-23860-4_48

  43. 43.

    Ponche R, Hascoet JY, Kerbrat O, Mogno P (2012) A new global approach to design for additive manufacturing. Virtual Phys Prototyp 7:93–105

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Coordination for the Improvement of Higher Education Personnel (Capes), the Brazilian National Council for Scientific and Technological Development (CNPq), and the German Research Foundation (DFG) for supporting related projects.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eduardo Zancul.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Appendix

Appendix

See Table 12.

Table 12 The executed plan

See Fig. 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 and 28.

Fig. 12
figure12

ANOVA table with pooled variables (ERROR_XY)

Fig. 13
figure13

Main effects (ERROR_XY)

Fig. 14
figure14

Interaction plot (ERROR_XY)

Fig. 15
figure15

ANOVA table with pooled variables (ERROR_Z)

Fig. 16
figure16

Main effects (ERROR_Z)

Fig. 17
figure17

Interaction plot (ERROR_Z)

Fig. 18
figure18

ANOVA table with pooled variables (ANGLE_Z)

Fig. 19
figure19

Main effects (ANGLE_Z)

Fig. 20
figure20

Interaction plot (ANGLE_Z)

Fig. 21
figure21

ANOVA table with pooled variables (ANGLE_XY)

Fig. 22
figure22

Main effects (ANGLE_XY)

Fig. 23
figure23

Interaction plot (ANGLE_Z)

Fig. 24
figure24

ANOVA table with pooled variables (ln(time))

Fig. 25
figure25

Main effects [ln(time)]

Fig. 26
figure26

Interaction plot [ln(time)]

Fig. 27
figure27

ANOVA table with pooled variables (volume)

Fig. 28
figure28

Interaction plot (volume)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Durão, L.F.C.S., Barkoczy, R., Zancul, E. et al. Optimizing additive manufacturing parameters for the fused deposition modeling technology using a design of experiments. Prog Addit Manuf 4, 291–313 (2019). https://doi.org/10.1007/s40964-019-00075-9

Download citation

Keywords

  • Additive manufacturing
  • Design of experiments
  • 3D printing
  • Fused deposition modeling