Advertisement

Influence of the additivation of graphene-like materials on the properties of polyamide for Powder Bed Fusion

  • J. J. Relinque
  • M. G. García-Romero
  • J. Hernández-Saz
  • J. Navas
  • A. J. Gil-Mena
  • D. L. Sales
  • F. J. Navas
  • G. Morales-Cid
  • D. Aguilera
  • A. Periñán
  • F. Lasagni
  • S. I. Molina
Full Research Article
  • 79 Downloads

Abstract

The purpose of this work is to achieve the improvement of mechanical properties of polyamide 12 through dispersion of graphene-like nanofillers, for its use in Powder Bed Fusion. Nanocomposites have been prepared by conventional injection moulding in order to determine the mechanical and electrical behaviour of the different systems as a previous step for the design of new materials for Powder Bed Fusion. Structural characterisation and mechanical and electrical properties assessments were performed, showing the improvement of stiffness and mechanical strength for the prepared nanocomposites, compared to pristine polyamide. Electrical conductivity has been introduced as well in some of them. This enhancement of properties, together with the first tests carried out on nanocomposites prepared with Powder Bed Fusion, makes this study a starting point to obtain commercially interesting materials for this additive manufacturing technique.

Keywords

Polyamide Graphene-like materials Nanocomposites Focused ion beam microscopy Mechanical testing Conductivity measures 

Notes

Acknowledgements

This work was supported by the Spanish MINECO (Projects EXPLORA MEDEA CTM2013-49796-EXP and OPTONANO TEC2014-53727-C2-R) and the Junta de Andalucía (INNANOMAT TEP-946 PAI research group). Cofinancing from UE-FEDER is also acknowledged. The corresponding author has been funded by an FPU pre-doctoral contract from the Spanish MECD.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Goodridge RD, Shofner ML, Hague RJM et al (2011) Processing of a Polyamide-12/carbon nanofibre composite by laser sintering. Polym Test 30:94–100.  https://doi.org/10.1016/j.polymertesting.2010.10.011 CrossRefGoogle Scholar
  2. 2.
    Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies: rapid prototyping to direct digital manufacturing, Springer, New YorkCrossRefGoogle Scholar
  3. 3.
    Hague R, Mansour S, Saleh N (2004) Material and design considerations for rapid manufacturing. Int J Prod Res 42:4691–4708.  https://doi.org/10.1080/00207840410001733940 CrossRefGoogle Scholar
  4. 4.
    Hopkinson N, Hague RJM, Dickens PM (2006) Rapid manufacturing: an industrial revolution for the digital age. Wiley, New JerseyGoogle Scholar
  5. 5.
    Bergmann C, Lindner M, Zhang W et al (2010) 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J Eur Ceram Soc 30:2563–2567.  https://doi.org/10.1016/j.jeurceramsoc.2010.04.037 CrossRefGoogle Scholar
  6. 6.
    Liu FR, He C, Chen JM (2013) Modeling of the beam transportation behavior in selective laser transmission sintering the translucent core–shell composite powder. Int J Mach Tools Manuf 65:22–28.  https://doi.org/10.1016/j.ijmachtools.2012.10.002 CrossRefGoogle Scholar
  7. 7.
    Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773CrossRefGoogle Scholar
  8. 8.
    Brandl E, Palm F, Michailov V et al (2011) Mechanical properties of additive manufactured titanium (Ti–6Al–4V) blocks deposited by a solid-state laser and wire. Mater Des 32:4665–4675.  https://doi.org/10.1016/j.matdes.2011.06.062 CrossRefGoogle Scholar
  9. 9.
    Peters M, Kumpfert J, Ward CH, Leyens C (2003) Titanium alloys for aerospace applications. Adv Eng Mater 5:419–427.  https://doi.org/10.1002/adem.200310095 CrossRefGoogle Scholar
  10. 10.
    Short DB (2015) Use of 3D printing by museums: educational exhibits, artifact education, and artifact restoration. 3D Print Addit Manuf 2:209–215.  https://doi.org/10.1089/3dp.2015.0030 CrossRefGoogle Scholar
  11. 11.
    Campbell TA, Ivanova OS (2013) 3D printing of multifunctional nanocomposites. Nano Today 8:119–120.  https://doi.org/10.1016/j.nantod.2012.12.002 CrossRefGoogle Scholar
  12. 12.
    Wang X, Jiang M, Zhou Z et al (2017) 3D printing of polymer matrix composites: a review and prospective. Compos Part B Eng 110:442–458.  https://doi.org/10.1016/j.compositesb.2016.11.034 CrossRefGoogle Scholar
  13. 13.
    Haghi AK, Zaikov GE (2013) Update on nanofillers in nanocomposites: from introduction to application. Smithers Rapram, ShrewsburyGoogle Scholar
  14. 14.
    Winey KI, Vaia RA (2007) Polymer nanocomposites. MRS Bull 32:314–322.  https://doi.org/10.1557/mrs2007.229 doiCrossRefGoogle Scholar
  15. 15.
    Fukushima H, Drzal LT, Rook BP, Rich MJ (2006) Thermal conductivity of exfoliated graphite nanocomposites. J Therm Anal Calorim 85:235–238.  https://doi.org/10.1007/s10973-005-7344-x CrossRefGoogle Scholar
  16. 16.
    Inuwa IM, Hassan A, Samsudin SA et al (2014) Mechanical and thermal properties of exfoliated graphite nanoplatelets reinforced polyethylene terephthalate/polypropylene composites. Polym Compos 35:2029–2035.  https://doi.org/10.1002/pc.22863 CrossRefGoogle Scholar
  17. 17.
    Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224.  https://doi.org/10.1038/nnano.2009.58 CrossRefGoogle Scholar
  18. 18.
    Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638–670.  https://doi.org/10.1016/j.progpolymsci.2010.11.003 CrossRefGoogle Scholar
  19. 19.
    Meng L-Y, Park S-J (2012) Preparation and characterization of reduced graphene nanosheets via pre-exfoliation of graphite flakes. Bull Korean Chem Soc 33:209–214.  https://doi.org/10.5012/bkcs.2012.33.1.209 CrossRefGoogle Scholar
  20. 20.
    Cho D, Lee S, Yang G et al (2005) Dynamic mechanical and thermal properties of phenylethynyl-terminated polyimide composites reinforced with expanded graphite nanoplatelets. Macromol Mater Eng 290:179–187.  https://doi.org/10.1002/mame.200400281 CrossRefGoogle Scholar
  21. 21.
    Li B, Zhong W-H (2011) Review on polymer/graphite nanoplatelet nanocomposites. J Mater Sci 46:5595–5614.  https://doi.org/10.1007/s10853-011-5572-y CrossRefGoogle Scholar
  22. 22.
    Safarpour M, Khataee A, Vatanpour V (2015) Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance. J Memb Sci 489:43–54.  https://doi.org/10.1016/j.memsci.2015.04.010 CrossRefGoogle Scholar
  23. 23.
    Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon N Y 45:1558–15650.  https://doi.org/10.1016/j.carbon.2007.02.034 CrossRefGoogle Scholar
  24. 24.
    Peponi L, Puglia D, Torre L et al (2014) Processing of nanostructured polymers and advanced polymeric based nanocomposites. Mater Sci Eng R Reports 85:1–46.  https://doi.org/10.1016/j.mser.2014.08.002 CrossRefGoogle Scholar
  25. 25.
    Murariu M, Dechief AL, Bonnaud L et al (2010) The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stab 95:889–900.  https://doi.org/10.1016/j.polymdegradstab.2009.12.019 CrossRefGoogle Scholar
  26. 26.
    Yasmin A, Luo J-J, Daniel IM (2006) Processing of expanded graphite reinforced polymer nanocomposites. Compos Sci Technol 66:1182–1189.  https://doi.org/10.1016/j.compscitech.2005.10.014 CrossRefGoogle Scholar
  27. 27.
    Athreya SR, Kalaitzidou K, Das S (2011) Mechanical and microstructural properties of Nylon-12/carbon black composites: Selective laser sintering versus melt compounding and injection molding. Compos Sci Technol 71:506–510.  https://doi.org/10.1016/j.compscitech.2010.12.028 CrossRefGoogle Scholar
  28. 28.
    Eyholzer C, Tingaut P, Zimmermann T, Oksman K (2012) Dispersion and reinforcing potential of carboxymethylated nanofibrillated cellulose powders modified with 1-hexanol in extruded poly(lactic acid) (PLA) composites. J Polym Environ 20:1052–1062.  https://doi.org/10.1007/s10924-012-0508-4 CrossRefGoogle Scholar
  29. 29.
    Wojtala A, Szablicki D, Semeniuk I et al (2015) Composites of ethylene-vinyl acetate copolymers with modified magnesium hydroxide-thermo-oxidative ageing. Fire Mater 39:585–599.  https://doi.org/10.1002/fam.2258 CrossRefGoogle Scholar
  30. 30.
    Chen G-H, Wu D-J, Weng W-G, Yan W-L (2001) Preparation of polymer/graphite conducting nanocomposite by intercalation polymerization. J Appl Polym Sci 82:2506–2513.  https://doi.org/10.1002/app.2101 CrossRefGoogle Scholar
  31. 31.
    Stichel T, Frick T, Laumer T et al (2017) A round Robin study for selective laser sintering of polyamide 12: microstructural origin of the mechanical properties. Opt Laser Technol 89:31–40.  https://doi.org/10.1016/j.optlastec.2016.09.042 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Ciencia de los Materiales e Ing. Met. y Q. I, Instituto de Microscopía Electrónica y Materiales, Universidad de Cádiz, Facultad de CienciasCádizSpain
  2. 2.Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Camino de los Descubrimientos s/n, Universidad de SevillaSevillaSpain
  3. 3.Departamento de Química-Física, Instituto de Microscopía Electrónica y Materiales, Universidad de Cádiz, Facultad de CienciasCádizSpain
  4. 4.Departamento de Ingeniería Eléctrica, Universidad de Cádiz, Escuela Politécnica SuperiorCádizSpain
  5. 5.Andaltec, Centro Tecnológico del PlásticoMartos, JaénSpain
  6. 6.CATEC, Center for Advanced Aerospace TechnologiesSevillaSpain

Personalised recommendations