Skip to main content

Improved model and experimental validation of deformation in fused filament fabrication of polylactic acid

Abstract

RepRaps (self-replicating rapid prototypers), which 3D print objects using fused filament fabrication (FFF), have evolved rapidly since their open-source introduction. These 3D printers have primarily been limited to desktop sizes of volumes of ~ 8000 cm3, which has limited the attention of the scientific community to investigating deformation of common thermoplastics such as polylactic acid (PLA) used in FFF printing. The only existing physically relevant deformation model was expanded here to use a physics-based temperature gradient instead of a step function. This was necessary to generalize the model to 3D printing in a room temperature environment without a heated chamber. The thermal equation was calibrated using thermal measurements and validated by measuring curvatures in printed objects. The results confirm that this is a valid model for predicting warpage of thin vertical walls of PLA. In addition, the effect of annealing was examined. It was found that at a temperature of 50 °C, no shrinkage or crystallization takes place, but at 90 °C the PLA rapidly crystallizes to around 20% crystallinity. This indicates that heated bed temperatures should be maintained at 50 °C or lower to avoid print failure (premature substrate release) with PLA. At 90 °C, the annealing is accompanied by a 5% size decrease in both horizontal dimensions, but an 8% increase in the vertical dimension. Thus, the volume decreased by only 3%. This observation may lead to potential methods of improving slicing of printing large PLA objects with FFF.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Sells E, Smith Z, Bailard S, Bowyer A, Olliver V (2010) RepRap: the replicating rapid prototyper: maximizing customizability by breeding the means of production. In: Piller FT, Tseng MM (eds) Handbook of research in mass customization and personalization. World Scientific, Singapore, pp 568–581

    Google Scholar 

  2. Jones R, Haufe P, Sells E, Iravani P, Olliver V, Palmer C, Bowyer A (2011) RepRap–the replicating rapid prototyper. Robotica 29(01):177–191. https://doi.org/10.1017/S026357471000069X

    Article  Google Scholar 

  3. Bowyer A (2014) 3D printing and humanity’s first imperfect replicator. 3D Printing Addit Manuf 1(1):4–5. https://doi.org/10.1089/3dp.2013.0003

    Article  Google Scholar 

  4. RepRap O (2017). http://reprap.org/wiki/RepRap_Options. Accessed 3 Jan 2017

  5. Wohlers T, Caffery T (2015) Wohlers report 2015: additive manufacturing and 3D printing state of the industry: annual worldwide progress report. Wohlers Associates, Fort Collins

    Google Scholar 

  6. Make (2015) Here are this year’s winners from make:’s digital fabrication shootout. Make. http://makezine.com/2015/11/04/digital-fabrication-shootout-winners/. Accessed 3 Jan 2017

  7. Priore R, Make (2016) Prusa i3 MK2. http://makezine.com/product-review/prusa-i3-mk2/. Accessed 3 Jan 2017

  8. Pearce JM, Blair CM, Laciak KJ, Andrews R, Nosrat A, Zelenika-Zovko I (2010) 3-D printing of open source appropriate technologies for self-directed sustainable development. J Sustain Dev 4:17–29

    Google Scholar 

  9. Gwamuri J, Franco D, Khan KY, Gauchia L, Pearce JM (2016) High-efficiency solar-powered 3-D printers for sustainable development. Machines 4(1):3. https://doi.org/10.3390/machines4010003

    Article  Google Scholar 

  10. Canessa E, Fonda C, Zennaro M (2013) Low-cost 3D printing for science, education and sustainable development. Low-Cost 3D Print ICTP. ISBN 92-95003-48-9

  11. Birtchnell T, Hoyle W (2014) 3D printing for development in the global south: the 3D4D challenge. Palgrave Macmillan, Basingstoke

    Book  Google Scholar 

  12. Mota C (2011) The rise of personal fabrication. In Proceedings of the 8th ACM conference on creativity and cognition, ACM, pp 279–288

  13. Laplume A, Anzalone GC, Pearce JM (2016) Open-source, self-replicating 3-D printer factory for small-business manufacturing. Int J Adv Manuf Technol 85(1):633–642. https://doi.org/10.1007/s00170-015-7970-9

    Article  Google Scholar 

  14. Pearce JM (2012) Building research equipment with free, open-source hardware. Science 337(6100):1303–1304. https://doi.org/10.1126/science.1228183

    Article  Google Scholar 

  15. Zhang C, Anzalone NC, Faria RP, Pearce JM (2013) Open-source 3D-printable optics equipment. PLoS One 8(3):e59840. https://doi.org/10.1371/journal.pone.0059840

    Article  Google Scholar 

  16. Pearce JM (2014) Open-source lab: how to build your own hardware and reduce research costs, Elsevier, New York

    Google Scholar 

  17. Wijnen B, Hunt EJ, Anzalone GC, Pearce JM (2014) Open-source syringe pump library. PLoS One 9(9):e107216. https://doi.org/10.1371/journal.pone.0107216

    Article  Google Scholar 

  18. Wijnen B, Anzalone GC, Pearce JM (2014) Open-source mobile water quality testing platform. J Water Sanit Hyg Dev 4(3):532–537. https://doi.org/10.2166/washdev.2014.137

    Article  Google Scholar 

  19. Lücking TH, Sambale F, Beutel S, Scheper T (2015) 3D-printed individual labware in biosciences by rapid prototyping: a proof of principle. Eng Life Sci 15(1):51–56. https://doi.org/10.1002/elsc.201400093

    Article  Google Scholar 

  20. Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM (2014) Evaluation of 3d printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 86(7):3240–3253. https://doi.org/10.1021/ac403397r

    Article  Google Scholar 

  21. Baden T, Chagas AM, Gage G, Marzullo T, Prieto-Godino LL, Euler T (2015) Open labware: 3-D printing your own lab equipment. PLoS Biol 13(3):e1002086. https://doi.org/10.1371/journal.pbio.1002086

    Article  Google Scholar 

  22. Zhang C, Wijnen B, Pearce JM (2016) Open-source 3-D platform for low-cost scientific instrument ecosystem. J Lab Autom 21(4):517–525. https://doi.org/10.1177/2211068215624406

    Article  Google Scholar 

  23. Pearce JM, Anzalone NC, Heldt CL (2016) Open-source wax RepRap 3-D printer for rapid prototyping paper-based microfluidics. J Lab Autom 21(4):510–516. https://doi.org/10.1177/2211068215624408

    Article  Google Scholar 

  24. Wittbrodt BT, Pearce JM (2015) Total U.S. cost evaluation of low-weight tension-based photovoltaic flat-roof mounted racking. Sol Energy 117:89–98. https://doi.org/10.1016/j.solener.2015.04.026

    Article  Google Scholar 

  25. Wittbrodt BT, Laureto J, Tymrak B, Pearce JM (2015) Distributed manufacturing with 3-D printing: a case study of recreational vehicle solar photovoltaic mounting systems. J Frugal Innov 1(1):1–7. https://doi.org/10.1186/s40669-014-0001-z

    Article  Google Scholar 

  26. Kasparova M, Grafova L, Dvorak P, Dostalova T, Prochazka A, Eliasova H, Prusa J, Kakawand S (2013) Possibility of reconstruction of dental plaster cast from 3D digital study models. Biomed Eng Online 12(49):1–11. https://doi.org/10.1186/1475-925X-12-49

    Article  Google Scholar 

  27. Burde AV, Constantiniuc M, Câmpian RS (2015) Applications of RepRap three-dimensional printers in dentistry—a literature review. Int J Med Dent 5(1):37–43

    Google Scholar 

  28. Kuehn BM (2016) Clinicians embrace 3D printers to solve unique clinical challenges. JAMA 315(4):333–335. https://doi.org/10.1001/jama.2015.17705

    Article  Google Scholar 

  29. Herrmann KH, Gärtner C, Güllmar D, Krämer M, Reichenbach JR (2014) 3D printing of MRI compatible components: why every MRI research group should have a low-budget 3D printer. Med Eng Phys 36(10):1373–1380. https://doi.org/10.1016/j.medengphy.2014.06.008

    Article  Google Scholar 

  30. Niezen G, Eslambolchilar P, Thimbleby H (2016) Open-source hardware for medical devices. BMJ Innov 2:78–83. https://doi.org/10.1136/bmjinnov-2015-000080

    Article  Google Scholar 

  31. Chae MP, Rozen WM, McMenamin PG, Findlay MW, Spychal RT, Hunter-Smith DJ (2015) Emerging applications of bedside 3D printing in plastic surgery. Front Surg. https://doi.org/10.3389/fsurg.2015.00025

    Article  Google Scholar 

  32. Pearce JM (2015) Applications of open source 3-D printing on small farms. Organ Farm 1(1):19–35. https://doi.org/10.12924/of2014.01010019

    Article  Google Scholar 

  33. Grujović N, Radović M, Kanjevac V, Borota J, Grujović G, Divac D (2011) 3D printing technology in education environment. In: 34th International conference on production engineering, pp 29–30

  34. Kentzer J, Koch B, Thiim M, Jones RW, Villumsen E (2011) An open source hardware-based mechatronics project: the replicating rapid 3-D printer. In: 4th International conference on mechatronics (ICOM), 2011. IEEE, pp 1–8

  35. Irwin JL, Pearce JM, Anzolone GC, Oppliger DE (2014) The RepRap 3-D printer revolution in STEM education. In: 121st ASEE annual conference & exposition

  36. Gonzalez-Gomez J, Valero-Gomez A, Prieto-Moreno A, Abderrahim M (2012) A new open source 3d-printable mobile robotic platform for education. In: Advances in autonomous mini robots. Springer, Berlin, pp 49–62

    Chapter  Google Scholar 

  37. Schelly C, Anzalone GC, Wijnen B, Pearce JM (2015) Open-source 3-D printing technologies for education: Bringing additive manufacturing to the classroom. J Vis Lang Comput 28:226–237. https://doi.org/10.1016/j.jvlc.2015.01.004

    Article  Google Scholar 

  38. Szulżyk-Cieplak J, Duda A, Sidor B (2014) 3D printers–new possibilities in education. Adv Sci Technol Res J 8(24):96–101

    Article  Google Scholar 

  39. Horowitz SS, Schultz PH (2014) Printing space: using 3D printing of digital terrain models in geosciences education and research. J Geosci Educ 62(1):138–145

    Article  Google Scholar 

  40. Short DB (2015) Use of 3D printing by museums: educational exhibits, artifact education, and artifact restoration. 3D Print Addit Manuf 2(4):209–215. https://doi.org/10.1089/3dp.2015.0030

    Article  Google Scholar 

  41. Omnexus (2017) Thermal expansion. http://omnexus.specialchem.com/polymer-properties/properties/coefficient-of-linear-thermal-expansion. Accessed 3 Jan 2017

  42. Stephens B, Azimi P, El Orch Z, Ramos T (2013) Ultrafine particle emissions from desktop 3D printers. Atmos Environ 79:334–339. https://doi.org/10.1016/j.atmosenv.2013.06.050

    Article  Google Scholar 

  43. Sin LT, Rahmat AR, Rahman WAWA (2012) Polylactic acid: PLA biopolymer technology and applications. William Andrew, Norwich

    Google Scholar 

  44. Natureworks ingeo (2017) http://www.natureworksllc.com/The-Ingeo-Journey. Accessed 3 Jan 2017

  45. https://re3d.org. Accessed 3 Jan 2017

  46. Kochan D, Kai CC, Zhaohui D (1999) Rapid prototyping issues in the 21st century. Comput Ind 39(1):3–10. https://doi.org/10.1016/S0166-3615(98)00125-0

    Article  Google Scholar 

  47. Mercelis P, Kruth JP (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp J 12(5):254–265. https://doi.org/10.1108/13552540610707013

    Article  Google Scholar 

  48. Wittbrodt B, Pearce JM (2015) The effects of PLA color on material properties of 3-D printed components. Addit Manuf 8:110–116. https://doi.org/10.1016/j.addma.2015.09.006

    Article  Google Scholar 

  49. Wang TM, Xi JT, Jin Y (2007) A model research for prototype warp deformation in the FDM process. Int J Adv Manuf Technol 33(11–12):1087–1096. https://doi.org/10.1007/s00170-006-0556-9

    Article  Google Scholar 

  50. Guerrero-de Mier A, Espinosa M, Domínguez M (2015) Bricking: a new slicing method to reduce warping. Procedia Eng 132:126–131. https://doi.org/10.1016/j.proeng.2015.12.488

    Article  Google Scholar 

  51. Xinhua L, Shengpeng L, Zhou L, Xianhua Z, Xiaohu C, Zhongbin W (2015) An investigation on distortion of pla thin-plate part in the fdm process. Int J Adv Manuf Technol 79(5–8):1117–1126. https://doi.org/10.1007/s00170-015-6893-9

    Article  Google Scholar 

  52. Long S, Atluri SN (2002) A meshless local Petrov-Galerkin method for solving the bending problem of a thin plate. Comput Model Eng Sci 3(1):53–63. https://doi.org/10.3970/cmes.2002.003.053

    Article  MATH  Google Scholar 

  53. Garlotta D (2001) A literature review of poly (lactic acid). J Polym Environ 9:63–84. https://doi.org/10.1023/A:1020200822435

    Article  Google Scholar 

  54. Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677

    Article  Google Scholar 

  55. Henton DE, Gruber P, Lunt J, Randall J (2005) Polylactic acid technology. Nat Fibers Biopolym Biocomposites 16:527–577

    Google Scholar 

  56. Wu S (1982) Polymer interface and adhesion. Marcel Dekker, New York

    Google Scholar 

  57. Payne T (2017) Heated build chamber for Rapman 3D printer. Instructables. http://www.instructables.com/id/Heated-Build-Chamber-for-Rapman-3D-Printer/. Accessed 3 Jan 2017

  58. Repkid (2017) Heated build chamber. http://reprap.org/wiki/Heated_Build_Chamber. Accessed 3 Jan 2017

  59. Yru (2017) GolemD. RepRap wiki. http://reprap.org/wiki/GolemD. Accessed 3 Jan 2017

  60. Ders. (2017) Introducing Kühling&Kühling RepRap industrial 3D printer. 3Ders. http://www.3ders.org/articles/20130220-introducing-kuhling-kuhling-reprap-industrial-3d-printer.html. Accessed 3 Jan 2017

  61. Carrasco F, Pagès P, Gámez-Pérez J, Santana O, Maspoch ML (2010) Processing of poly (lactic acid): characterization of chemical structure, thermal stability and mechanical properties. Polym Degrad Stab 95(2):116–125

    Article  Google Scholar 

  62. Natureworks (2017) 4043D polylactide acid http://www.natureworksllc.com/Product-and-Applications/3D-Printing. Accessed 3 Jan 2017

  63. Anzalone GC, Wijnen B, Pearce JM (2015) Multi-material additive and subtractive prosumer digital fabrication with a free and open-source convertible delta RepRap 3-D printer. Rapid Prototyp J 21(5):506–519

    Article  Google Scholar 

  64. Wijnen B, Anzalone GC, Haselhuhn AS, Sanders PG, Pearce JM (2016) Free and open-source control software for 3-D motion and processing. J Open Res Softw 4(1):e2. https://doi.org/10.5334/jors.78

    Article  Google Scholar 

  65. Franklin (2017) Github. https://github.com/mtu-most/franklin. Accessed 3 Jan 2017

  66. OpenSCAD (2017) 2015.03-1 http://www.openscad.org. Accessed 3 Jan 2017

  67. Slic3r (2017) 1.2.9 http://www.slic3r.org. Accessed 3 Jan 2017

  68. OSF (2017) https://osf.io/4kvwm/. Accessed 3 Jan 2017

  69. GNU Image Manipulation Program (2017) 2.8.16, http://www.gimp.org. Accessed 3 Jan 2017

Download references

Acknowledgements

The authors would like to thank Dr. Edward Laitila, Gerald Anzalone, Mark Klein for their help and discussion, and thermoanalytics for the use of the IR camera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua M. Pearce.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wijnen, B., Sanders, P. & Pearce, J.M. Improved model and experimental validation of deformation in fused filament fabrication of polylactic acid. Prog Addit Manuf 3, 193–203 (2018). https://doi.org/10.1007/s40964-018-0052-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40964-018-0052-4

Keywords

  • Fused filament fabrication
  • Fused deposition modeling
  • Deformation
  • 3D printing
  • Poly lactic acid
  • RepRap