Skip to main content

Advertisement

Log in

Effect of Thermal Cold Cycling on the Microstructure and Properties of Al–Cu–Mg–Ag Alloy

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

To study the effect of thermal cold cycling on the microstructure and properties of Al–Cu–Mg–Ag alloy, hardness and tensile tests, resistivity tests, friction and wear tests, intergranular corrosion, and electrochemical corrosion tests were used to explore its mechanical properties, wear resistance, and corrosion resistance changes. Laser confocal microscopy, scanning electron microscopy, optical microscopy, and transmission electron microscopy were used to observe and analyze the wear morphology, corrosion conditions, and microstructure of the alloy. The results show that after thermal cold cycling, the phase of the Al–Cu–Mg–Ag alloy is a fine and dense Ω phase, and the microstructure is significantly optimized, effectively improving the properties of the alloy. As the number of cycles increases, the properties of the alloy change accordingly, when thermal cold cycled twice (TCC2), the small Ω phase is dispersed and evenly distributed on the matrix, which enhances the strengthening effect of the alloy. The hardness, yield strength, and tensile strength of the alloy are 155.6 HV, 445 MPa, and 484 MPa, respectively. The conductivity and resistivity at this time are 55.2 %IACS and 31.1 nΩ m, respectively. The wear resistance of the alloy is also improved, and the wear depth is decreased. The average friction coefficient is 1.214, and the wear rate is 0.51 × 10−4 mm3/m. The intergranular corrosion depth is 45 µm, the self-corrosion current density is 0.0048 mA cm−2, corrosion weight loss is 8.3 mg/cm2, the passivation film thickness is 1.82 nm, and the corrosion resistance is higher. As the number of cycles continues to increase, the aging time continues to extend, causing the size of the matrix precipitate phase to become coarser, the strengthening effect is weakened, and the properties of the corresponding alloy become degenerate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. R.M. Su, Y.X. Jia, J. Xiao et al., Effect of secondary aging on microstructure and properties of cast Al–Cu–Mg alloy. China Found. 20(1), 71–77 (2023). https://doi.org/10.1007/s41230-023-1049-2

    Article  Google Scholar 

  2. I.S. Zuiko, M.R. Gazizov, R.O. Kaibyshev, On the precipitation of the Ω-phase 111 Al plates in the Al–Cu–Mg alloy. Phys. Met. Metall. 124(5), 514–519 (2023). https://doi.org/10.1134/S0031918X23600409

    Article  CAS  Google Scholar 

  3. J.C. Guo, R.M. Su, G.L. Li et al., Effect of secondary aging on microstructure and properties of cast Al–Cu–Mg–Ag alloy. Int. J. Metalcast. (2023). https://doi.org/10.1007/s40962-023-01161-z

    Article  Google Scholar 

  4. M. Rezaei, H.J. Aval, Effect of Li micro-alloying on microstructure and corrosion resistance of non-isothermal aged Al–Cu–Mg cast alloy with different Cu/Mg ratios. Int. J. Metalcast. 17, 2271–2285 (2023). https://doi.org/10.1007/s40962-022-00933-3

    Article  CAS  Google Scholar 

  5. C.C. Tao, H.J. Huang, X.J. Yuan et al., Effect of Y element on microstructure and hot tearing sensitivity of as-cast Al–4.4 Cu–1.5 Mg–0.15 Zr alloy. Int. J. Metalcast. 16(2), 1010–1019 (2022). https://doi.org/10.1007/s40962-021-00666-9

    Article  CAS  Google Scholar 

  6. J.W. Fu, K. Cui, Effect of Mn content on the microstructure and corrosion resistance of Al–Cu–Mg–Mn alloys. J. Alloys Compd. 896, 162903 (2022). https://doi.org/10.1016/j.jallcom.2021.162903

    Article  CAS  Google Scholar 

  7. N. Patel, S. Manani, A.K. Pradhan, Effect of addition of Cu on microstructure and some properties of 5754 aluminum alloy. Trans. Indian Inst. Met. 76, 1929–1936 (2023). https://doi.org/10.1007/s12666-023-02904-6

    Article  CAS  Google Scholar 

  8. S.L. Yang, X.J. Zhao, H.W. Chen et al., Atomic structure and evolution of a precursor phase of Ω precipitate in an Al–Cu–Mg–Ag alloy. Acta Mater. 225, 117538 (2022). https://doi.org/10.1016/j.actamat.2021.117538

    Article  CAS  Google Scholar 

  9. M.R. Gazizov, A.O. Boev, C.D. Marioara et al., The unique hybrid precipitate in a peak-aged Al–Cu–Mg–Ag alloy. Scr. Mater. 194, 113669 (2021). https://doi.org/10.1016/j.scriptamat.2020.113669

    Article  CAS  Google Scholar 

  10. S. Bai, X.Y. Yi, Z.Y. Liu et al., The influence of preaging on the strength and precipitation behavior of a deformed Al–Cu–Mg-–g alloy. J. Alloys Compd. 764, 62–72 (2018). https://doi.org/10.1016/j.jallcom.2018.06.046

    Article  CAS  Google Scholar 

  11. M.R. Gazizov, A.O. Boev, C.D. Marioara et al., Edge interfaces of the Ω plates in a peak-aged Al–Cu–Mg–Ag alloy. Mater Charact 185, 111747 (2022). https://doi.org/10.1016/j.matchar.2022.111747

    Article  CAS  Google Scholar 

  12. J. Wang, J.P. Xie, Z.P. Mao et al., Microstructure evolution and mechanical properties of the Al–Cu–Mg–Ag alloy during non-isothermal aging. J. Alloys Compd. 942, 169031 (2023). https://doi.org/10.1016/j.jallcom.2023.169031

    Article  CAS  Google Scholar 

  13. S. Bai, X.W. Zhou, Z.Y. Liu et al., Effects of Ag variations on the microstructures and mechanical properties of Al–Cu–Mg alloys at elevated temperatures. Mater. Sci. Eng. A 611, 69–76 (2014). https://doi.org/10.1016/j.msea.2014.05.065

    Article  CAS  Google Scholar 

  14. S. Bai, Z.Y. Liu, X.W. Zhou et al., Stress-induced thickening of Ω phase in Al–Cu–Mg alloys containing various Ag additions. Mater. Sci. Eng. A 589, 89–96 (2014). https://doi.org/10.1016/j.msea.2013.09.065

    Article  CAS  Google Scholar 

  15. N. Patel, M. Joshi, A. Singh, A.K. Pradhan, Effect of solution heat treatment on microstructure and some properties of Al–Cu–Mg alloy. Trans. Indian Inst. Met. 76, 2681–2689 (2023). https://doi.org/10.1007/s12666-023-02961-x

    Article  CAS  Google Scholar 

  16. N. Patel, M. Joshi, A. Singh, G.N. Mittal, M. Agrawal, S. Manani, A.K. Pradhan, Effect of solution heat treatment (temperature and time) on microstructure and properties of Al–Cu–Mg alloy. Int. J. Metalcast. 6, 1–9 (2023)

    Google Scholar 

  17. M. Beder, Y. Alemdag, Influence of Mg addition and T6 heat treatment on microstructure, mechanical and tribological properties of Al–12Si–3Cu based alloy. Trans. Nonferrous Met. Soc. China 31(8), 2208–2219 (2021). https://doi.org/10.1016/S1003-6326(21)65649-2

    Article  CAS  Google Scholar 

  18. P. Deng, W.F. Mo, Z.Q. Ouyang et al., Mechanical properties and corrosion behaviors of (Sc, Zr) modified Al–Cu–Mg alloy. Mater Charact 196, 112619 (2023). https://doi.org/10.1016/j.matchar.2022.112619

    Article  CAS  Google Scholar 

  19. Z.J. Weng, X.Z. Liu, K.X. Gu et al., Modification of residual stress and microstructure in aluminium alloy by cryogenic treatment. Mater. Sci. Technol. 36(14), 1547–1555 (2020). https://doi.org/10.1080/02670836.2020.1800182

    Article  CAS  Google Scholar 

  20. R.M. Su, Y.X. Jia, G.L. Li et al., Effect of deformation amount on microstructure and properties of AA2024-T8I4 with deep cryogenic treatment. J. Alloys Compd. 947, 169578 (2023). https://doi.org/10.1016/j.jallcom.2023.169578

    Article  CAS  Google Scholar 

  21. S.Y. Ma, R.M. Su, K.N. Wang et al., Effect of deep cryogenic treatment on wear and corrosion resistance of an Al–Zn–Mg–Cu alloy. Russ. J. Non-Ferrous Metals. 62, 89–96 (2021). https://doi.org/10.3103/S1067821221010144

    Article  Google Scholar 

  22. M. Cabeza, I. Feijoo, P. Merino et al., Effect of the deep cryogenic treatment on the stress corrosion cracking behaviour of AA 2017-T4 aluminium alloy. Mater. Corros. 67(5), 504–512 (2016). https://doi.org/10.1002/maco.201508586

    Article  CAS  Google Scholar 

  23. M. Araghchi, H. Mansouri, R. Vafaei, Influence of cryogenic thermal treatment on mechanical properties of an Al–Cu–Mg alloy. Mater. Sci. Technol. 34(4), 468–472 (2018). https://doi.org/10.1080/02670836.2017.1407553

    Article  CAS  Google Scholar 

  24. M. Jovičević-Klug, P. Jovičević-Klug, B. Podgornik, Influence of deep cryogenic treatment on natural and artificial aging of Al–Mg–Si alloy EN AW 6026. J. Alloys Compd. 899, 163323 (2022). https://doi.org/10.1016/j.jallcom.2021.163323

    Article  CAS  Google Scholar 

  25. J. Wang, J.P. Xie, D.Q. Ma et al., Effect of deep cryogenic treatment on the microstructure and mechanical properties of Al–Cu–Mg–Ag alloy. J. Mater. Res. Technol. 25, 6880–6885 (2023). https://doi.org/10.1016/j.jmrt.2023.07.130

    Article  CAS  Google Scholar 

  26. W.L. Gao, X.J. Wang, J.Z. Chen et al., Influence of deep cryogenic treatment on microstructure and properties of 7A99 ultra-high strength aluminum alloy. Metals 9(6), 631 (2019). https://doi.org/10.3390/met9060631

    Article  CAS  Google Scholar 

  27. P.P. Wang, G.Q. Chen, W.J. Li et al., Microstructural evolution and thermal conductivity of diamond/Al composites during thermal cycling. Int. J. Miner. Metall. Mater. 28, 1821–1827 (2021). https://doi.org/10.1007/s12613-020-2114-0

    Article  CAS  Google Scholar 

  28. H.M. Wang, Y.G. Li, C.B. Guo et al., Effect of thermal-cold cycling treatment on mechanical properties and microstructure of 6061 aluminum alloy. J. Wuhan Univ. Technol. Mater. Sci. Ed. 38(3), 677–681 (2023). https://doi.org/10.1007/s11595-023-2745-x

    Article  CAS  Google Scholar 

  29. S.G. Qu, H.S. Lou, X.Q. Li et al., Effect of heat-treatment on stress relief and dimensional stability behavior of SiCp/Al composite with high SiC content. Mater. Des. 86, 508–515 (2015). https://doi.org/10.1016/j.matdes.2015.07.044

    Article  CAS  Google Scholar 

  30. Y.F. Song, Q. Zhang, W. Du et al., Effect of thermal-cold cycling treatment on microstructural stability of Al–Cu–Mg alloy hemispherical component. J. Alloys Compd. 969, 172388 (2023). https://doi.org/10.1016/j.jallcom.2023.172388

    Article  CAS  Google Scholar 

  31. G.K. Sigworth, T.A. Kuhn, Grain refinement of aluminum casting alloys. Int. J. Metalcast. 1(1), 31–40 (2007). https://doi.org/10.1007/BF03355416

    Article  CAS  Google Scholar 

  32. A.I. Ibrahim, A.M. Samuel, F.H. Samuel et al., Response of varying levels of silicon and transition elements on room-and elevated-temperature tensile properties in an Al–Cu alloy. Int. J. Metalcast. 12(2), 396–414 (2018). https://doi.org/10.1007/s40962-017-0177-0

    Article  CAS  Google Scholar 

  33. M.C. Metha, S.K. Chaudhury, D. Mandal, Effects of amplitude of die vibration on cast structure of Al–4.5Cu alloy. Int. J. Metalcast. 13(2), 438–449 (2019). https://doi.org/10.1007/s40962-018-0271-y

    Article  CAS  Google Scholar 

  34. H. Qi, X.Y. Liu, S.X. Liang et al., Mechanical properties and corrosion resistance of Al–Cu–Mg–Ag heat-resistant alloy modified by interrupted aging. J. Alloys Compd. 657, 318–324 (2016). https://doi.org/10.1016/j.jallcom.2015.10.094

    Article  CAS  Google Scholar 

  35. X.Y. Liu, Q.L. Pan, X.L. Zhang et al., Effects of stress-aging on the microstructure and properties of an aging forming Al–Cu–Mg–Ag alloy. Mater. Des. 58, 247–251 (2014). https://doi.org/10.1016/j.matdes.2014.01.048

    Article  CAS  Google Scholar 

  36. M. Gazizov, R. Kaibyshev, Precipitation structure and strengthening mechanisms in an Al–Cu–Mg–Ag alloy. Mater. Sci. Eng. A 702, 29–40 (2017). https://doi.org/10.1016/j.msea.2017.06.110

    Article  CAS  Google Scholar 

  37. M.R. Ahmadi, B. Sonderegger, E. Povoden-Karadeniz et al., Precipitate strengthening of non-spherical precipitates extended in <100> or 100 direction in fcc crystals. Mater. Sci. Eng. A 590, 262–266 (2014). https://doi.org/10.1016/j.msea.2013.10.043

    Article  CAS  Google Scholar 

  38. L. Wen, Y.M. Wang, Y. Zhou et al., Corrosion evaluation of microarc oxidation coatings formed on 2024 aluminium alloy. Corros. Sci. 52(8), 2687–2696 (2010). https://doi.org/10.1016/j.corsci.2010.04.022

    Article  CAS  Google Scholar 

  39. S. Bose, L.C. Pathak, R. Singh, Response of boride coating on the Ti–6Al–4V alloy to corrosion and fretting corrosion behavior in Ringer’s solution for bio-implant application. Appl. Surf. Sci. 433, 1158–1174 (2018). https://doi.org/10.1016/j.apsusc.2017.09.223

    Article  CAS  Google Scholar 

  40. S.G. Zhou, Q.Q. Yan, C.T. Tang et al., Effect of the chloride on passivity breakdown of Al–Zn–Mg alloy. Corros. Sci. 163, 108254 (2020). https://doi.org/10.1016/j.corsci.2019.108254

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Nature Science Foundation of China (52204394).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiming Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Su, R., Shi, L. et al. Effect of Thermal Cold Cycling on the Microstructure and Properties of Al–Cu–Mg–Ag Alloy. Inter Metalcast (2024). https://doi.org/10.1007/s40962-024-01362-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40962-024-01362-0

Keywords

Navigation