Skip to main content
Log in

Evaluation of the Effect of Shallow Cryogenic Treatment on Tribological Properties and Microstructure of High Manganese Steel

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effect of shallow cryogenic treatment on the mechanical properties and microstructural evolution of a Hadfield steel with a chemical composition of (Fe-12Mn-1.2C). An ingot was produced using casting technique and heat treated by austenitizing at 1050 °C for 1 h followed by rapid quenching to room temperature. Samples were cut from the heat treated ingot and divided into three sets: H (no further treatment), HD (5% deformation), and HDC (cryogenic treatment at −80 °C for 2 h after deformation). Microstructural characterizations were performed using optical microscopy, scanning electron microscopy, and transmission electron microscopy. X-ray diffraction was used to identify formed phases and carbides, as well as determine dislocation density, crystallite size, lattice strain value, and texture coefficient. The relationships between stacking faults and dislocation density were investigated, and the wear rate and friction coefficients of the samples were calculated. The results showed that cryogenic treatment and deformation caused mechanical twinning, transformed austenite into α′(BCT) martensite, changed the form of MC type carbides, and increased the dislocation density by approximately 50%. The stacking faults were more pronounced in the cryogenic treatment samples, and the strain value of planes calculated by XRD analysis was high in cryogenically treated samples. The wear rate of the HDC sample improved by about 20% compared to the H sample. These findings provide important insights into the structural changes of high manganese steels and can contribute to the development of new materials with improved properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

Data availability

Data cannot be share at this time as the data are also part of an ongoing study.

References

  1. R. Harzallah, A. Mouftie, E. Felder, S. Harir, J.P. Maujean, Rolling contact fatigue of Hadfield steel X120Mn12. Wear 269(9–10), 647–654 (2010). https://doi.org/10.1016/j.wear.2010.07.001

    Article  CAS  Google Scholar 

  2. D.V. Lychagin, A.V. Filippov, O.S. Novitskaia, Y.I. Chumlyakov, E.A. Kolubaev, O.V. Sizova, Friction-induced slip band relief of-Hadfield steel single crystal oriented for multiple slip deformation. Wear 374, 5–14 (2017). https://doi.org/10.1016/j.wear.2016.12.028

    Article  CAS  Google Scholar 

  3. A.K. Srivastava, K. Das, Microstructural characterization of Hadfield austenitic manganese steel. J. Mater. Sci. 43(16), 5654–5658 (2008). https://doi.org/10.1007/s10853-008-2759-y

    Article  CAS  Google Scholar 

  4. C.H. Desch (1941). Robert Abbott Hadfield, 1858-1940. doi https://doi.org/10.1098/rsbm.1941.0027

  5. M. Sabzi, M. Farzam, Hadfield manganese austenitic steel: a review of manufacturing processes and properties. Mater. Res. Express 6(10), 1065c2 (2019). https://doi.org/10.1088/2053-1591/ab3ee3

    Article  CAS  Google Scholar 

  6. M.K. El-Fawkhry, A.M. Fathy, M.M. Eissa, H. El-Faramway, Eliminating heat treatment of Hadfield steel in stress abrasion wear applications. Int. J. Met. 8(1), 29–36 (2014). https://doi.org/10.1007/BF03355569

    Article  Google Scholar 

  7. M. Azadi, A.M. Pazuki, M.J. Olya, The effect of new double solution heat treatment on the High manganese Hadfield steel properties. Metall. Micros. Anlys 7(5), 618–626 (2018). https://doi.org/10.1007/s13632-018-0471-0

    Article  CAS  Google Scholar 

  8. T.S. Wang, B. Lu, M. Zhang, R.J. Hou, F.C. Zhang, Nanocrystallization and α martensite formation in the surface layer of medium-manganese austenitic wear-resistant steel caused by shot peening. Mater. Sci. Eng. A 458(1–2), 249–252 (2007). https://doi.org/10.1016/j.msea.2006.12.066

    Article  CAS  Google Scholar 

  9. R.W. Smith, A. DeMonte, W.B.F. Mackay, Development of high-manganese steels for heavy duty cast-to-shape applications. J. Mater. Process. Technol 211(4), 784–784 (2011). https://doi.org/10.1016/j.jmatprotec.2010.11.016

    Article  Google Scholar 

  10. D.L. Johannsen, A. Kyrolainen, P.J. Ferreira, Influence of annealing treatment on the formation of nano/submicron grain size AISI 301 austenitic stainless steels. Metall. Mater. Trans. A 37(8), 2325–2338 (2006). https://doi.org/10.1007/BF02586207

    Article  Google Scholar 

  11. J. Jung, J.I. Yoon, J.G. Kim, M.I. Latypov, J.Y. Kim, H.S. Kim, Continuum understanding of twin formation near grain boundaries of FCC metals with low stacking fault energy. npj Computat. Mater. (2017). https://doi.org/10.1038/s41524-017-0023-1

    Article  Google Scholar 

  12. S. Mahajan, G.Y. Chin, Formation of deformation twins in fcc crystals. Acta Metall. 21(10), 1353–1363 (1973). https://doi.org/10.1016/0001-6160(73)90085-0

    Article  CAS  Google Scholar 

  13. S. Wei, L. Xu, Review on research progress of steel and iron wear-resistant materials. Acta Metall. Sın. 56(4), 523–538 (2019). https://doi.org/10.11900/0412.1961.2019.00370

    Article  CAS  Google Scholar 

  14. B. Avishan, R. Karimkhani Shamloo, E. Akbarzadeh Chiniforoush, S. Yazdani, Ultrafine carbide-free bainite in high-carbon steel after continuous annealing with different cooling rates. J. Mater. Eng. Perform. 32, 1–10 (2022). https://doi.org/10.1007/s11665-022-07446-4

    Article  CAS  Google Scholar 

  15. W. Yan, L. Fang, K. Sun, Y. Xu, Effect of surface work hardening on wear behavior of Hadfield steel. Mater. Sci. Eng. A 460, 542–549 (2007). https://doi.org/10.1016/j.msea.2007.02.094

    Article  CAS  Google Scholar 

  16. M.M. Khruschov, Principles of abrasive wear. Wear 28(1), 69–88 (1974). https://doi.org/10.1016/0043-1648(74)90102-1

    Article  Google Scholar 

  17. M. Lindroos, K. Valtonen, A. Kemppainen, A. Laukkanen, K. Holmberg, V.T. Kuokkala, Wear behavior and work hardening of high strength steels in high stress abrasion. Wear 322, 32–40 (2015). https://doi.org/10.1016/j.wear.2014.10.018

    Article  CAS  Google Scholar 

  18. W.S. Owen, M. Grujicic, Strain aging of austenitic Hadfield manganese steel. Acta Mater. 47(1), 111–126 (1998). https://doi.org/10.1016/S1359-6454(98)00347-4

    Article  Google Scholar 

  19. G. Altuntaş, O. Altuntaş, M.K. Öztürk, B. Bostan, Metallurgical and crystallographic analysis of different amounts of deformation applied to hadfield steel. Int. J. Metalcast. 962, 1–10 (2022). https://doi.org/10.1007/s40962-022-00860-3

    Article  CAS  Google Scholar 

  20. P.R. Rao, V.V. Kutumbarao, Developments in austenitic steels containing manganese. Int. Mater. Rev 34(1), 69–92 (1989). https://doi.org/10.1179/imr.1989.34.1.69

    Article  CAS  Google Scholar 

  21. V.N. Najafabadi, K. Amini, M.B. Alamdarlo, Investigating the effect of titanium addition on the wear resistance of Hadfield steel. Metall. Res. Technol. 111(6), 375–382 (2014). https://doi.org/10.1051/metal/2014044

    Article  CAS  Google Scholar 

  22. D.H. Jeong, S.G. Lee, J.Y. Yoo, J.S. Lee, S. Kim, Comparative studies on near-threshold fatigue crack propagation behavior of high manganese steels at room and cryogenic temperatures. Mater. Charact 10, 28–36 (2015). https://doi.org/10.1016/j.matchar.2015.03.012

    Article  CAS  Google Scholar 

  23. L.G. Korshunov, V.V. Sagaradze, N.L. Chernenko, Structural and phase transformations in Hadfield steel upon frictional loading in liquid nitrogen. Phys Met Metallogr 117(8), 828–833 (2016). https://doi.org/10.1134/S0031918X16080068

    Article  CAS  Google Scholar 

  24. H. Kim, J. Park, J.E. Jung, S.S. Sohn, S. Lee, Interpretation of cryogenic-temperature Charpy fracture initiation and propagation energies by microstructural evolution occurring during dynamic compressive test of austenitic Fe–(0.4, 1.0) C–18Mn steels. Mater. Sci. Eng. A 641, 340–347 (2015). https://doi.org/10.1016/j.msea.2015.05.095

    Article  CAS  Google Scholar 

  25. D. Qi-Xun, W. An-Dong, C. Xiao-Nong, L. Xin-Min, Stacking fault energy of cryogenic austenitic steels. Chin. Phys. 11(6), 596 (2002). https://doi.org/10.1088/1009-1963/11/6/315

    Article  Google Scholar 

  26. M.N. Yoozbashi, S. Yazdani, T.S. Wang, Design of a new nanostructured, high-Si bainitic steel with lower cost production. Mater. Des 32(6), 3248–3253 (2011). https://doi.org/10.1016/j.matdes.2011.02.031

    Article  CAS  Google Scholar 

  27. R.F. Barron, Cryogenic treatment of metals to improve wear resistance. Cryogenics 22(8), 409–413 (1982). https://doi.org/10.1016/0011-2275(82)90085-6

    Article  Google Scholar 

  28. Zurecki, Z. (2005) Cryogenic quenching of steel revisited. In Heat Treating: Proceedings of the 23rd ASM Heat Treating Society Conference.

  29. J.D. Darwin, D.M. Lal, G. Nagarajan, Optimization of cryogenic treatment to maximize the wear resistance of 18% Cr martensitic stainless steel by Taguchi method. J. Mater. Process. Technol 195(1–3), 241–247 (2008). https://doi.org/10.1016/j.jmatprotec.2007.05.005

    Article  CAS  Google Scholar 

  30. E. Curiel-Reyna, J. Contreras, T. Rangel-Ortis, A. Herrera, L. Baños, A.D. Real, M.E. Rodríguez, Effect of carbide precipitation on the structure and hardness in the heat-affected zone of Hadfield steel after post-cooling treatments. Mater. Manuf. Process 23(1), 14–20 (2007). https://doi.org/10.1080/10426910701524352

    Article  CAS  Google Scholar 

  31. S. Ayadi, A. Hadji, Effect of chemical composition and heat treatments on the microstructure and wear behavior of manganese steel. Int. J. Metalcast. 15(2), 510–519 (2021). https://doi.org/10.1007/s40962-020-00479-2

    Article  CAS  Google Scholar 

  32. R. Zellagui, L. Hemmouche, H. Ait-Sadi, A. Chelli, Effect of element addition, microstructure characteristics, mechanical properties, machining and welding processes of the hadfield austenitic manganese steel. Arch. Metall. Mater. 67(1), 863–868 (2022). https://doi.org/10.24425/amm.2022.139676

    Article  CAS  Google Scholar 

  33. R. Zellagui, L. Hemmouche, H. Bouchafaa, R. Belrechid, H. Aitsadi, A. Chelli, N. Djalleb, Effect of heat treatments on the microstructure, mechanical, wear and corrosion resistance of casted hadfield steel. Int. J. Metalcast. 16(4), 2050–2064 (2022). https://doi.org/10.1007/s40962-021-00751-z

    Article  CAS  Google Scholar 

  34. R.P. Reed, M. Golda, Cryogenics 37, 233 (1997). https://doi.org/10.1016/S0011-2275(97)00004-0

    Article  CAS  Google Scholar 

  35. A. Bensely, A. Prabhakaran, D.M. Lal, G. Nagarajan, Cryogenics 45, 747 (2005). https://doi.org/10.1016/j.cryogenics.2005.10.004

    Article  CAS  Google Scholar 

  36. D. Hull, D.J. Bacon (2001). Introduction to Dislocations.

  37. B. Roy, N.K. Kumar, P.M.G. Nambissan, J. Das, Evolution and interaction of twins, dislocations and stacking faults in rolled α-brass during nanostructuring at sub-zero temperature. AIP Adv. 4(6), 067101 (2014). https://doi.org/10.1063/1.4881376

    Article  CAS  Google Scholar 

  38. J.W. Martin, Micromechanisms in particle-hardened alloys (Cambridge University, Cambridge, 1980)

    Google Scholar 

  39. M.J. Whelan, P.B. Hirsch, R.W. Horne, W. Bollmann, Dislocations and stacking faults in stainless steel. Proc. Royal Soc. Lond. Ser. A Math. Phys. Sci. 240(1223), 524–538 (1957)

    CAS  Google Scholar 

  40. H. Schumann, K. Goodknecht, Pecularities in the structure of coldworked and annealed manganese steel. Prakt. Metall. 4(4), 178–180 (1967). https://doi.org/10.1515/pm-1967-040404

    Article  Google Scholar 

  41. H.K.D.H. Bhadeshia, Cementite. Int. Mater. Rev. 65(1), 1–27 (2020)

    Article  CAS  Google Scholar 

  42. N.C. Halder, C.N. Wagner, Separation of particle size and lattice strain in integral breadth measurements. Acta Cryst. 20(2), 312–313 (1966). https://doi.org/10.1107/S0365110X66000628

    Article  CAS  Google Scholar 

  43. K.M. Rahman, V.A. Vorontsov, D. Dye, The effect of grain size on the twin initiation stress in a TWIP steel. Acta Mater. 89, 247–257 (2015). https://doi.org/10.1016/j.actamat.2015.02.008

    Article  CAS  Google Scholar 

  44. G.B.X. Harris, Quantitative measurement of preferred orientation in rolled uranium bars. Lond. Edinb. Dublin Philos. Mag. J. Sci. 43(336), 113–123 (1952). https://doi.org/10.1080/14786440108520972

    Article  Google Scholar 

  45. R.E. Smallman, Modern phys. Metall. 4(1), 355–491 (2016)

    Google Scholar 

  46. R. Xiong, H. Peng, S. Wang, H. Si, Y. Wen, Effect of stacking fault energy on work hardening behaviors in Fe–Mn–Si–C high manganese steels by varying silicon and carbon contents. Mater. Des 85, 707–714 (2015). https://doi.org/10.1016/j.matdes.2015.07.072

    Article  CAS  Google Scholar 

  47. Y. Wang, C. Song, R. Song, Z. Ma, T. Taylor, Size effect of impact abrasive particles on wear and surface hardening behavior of high-manganese steel. Acta Metall. Sın. 1, 1–11 (2023). https://doi.org/10.1007/s40195-023-01540-9

    Article  Google Scholar 

  48. T.S. Byun, On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels. Acta Mater. 51(11), 3063–3071 (2003). https://doi.org/10.1016/S1359-6454(03)00117-4

    Article  CAS  Google Scholar 

  49. H. Idrissi, L. Ryelandt, M. Veron, D. Schryvers, P.J. Jacques, Is there a relationship between the stacking fault character and the activated mode of plasticity of Fe-Mn-based austenitic steels? Scr. Mater 60(11), 941–944 (2009). https://doi.org/10.1016/j.scriptamat.2009.01.040

    Article  CAS  Google Scholar 

  50. Q. Luo, M. Kitchen, J. Li, W. Li, Y. Li, Experimental investigation on the spalling failure of a railway turnout made from Hadfield steel. Wear 523, 204779 (2023). https://doi.org/10.1016/j.wear.2023.204779

    Article  CAS  Google Scholar 

  51. S. Sevsek, C. Haase, W. Bleck, Strain-rate-dependent deformation behavior and mechanical properties of a multi-phase medium-manganese steel. Metals 9(3), 344 (2019). https://doi.org/10.3390/met9030344

    Article  CAS  Google Scholar 

  52. A. Razavykia, C. Delprete, P. Baldissera, Correlation between microstructural alteration, mechanical properties and manufacturability after cryogenic treatment: A review. Mater. 12(20), 3302 (2019). https://doi.org/10.3390/ma12203302

    Article  CAS  Google Scholar 

  53. A.R. Chintha, Metallurgical aspects of steels designed to resist abrasion, and impact-abrasion wear. Mater. Sci. Technol 35(10), 1133–1148 (2019). https://doi.org/10.1080/02670836.2019.1615669

    Article  CAS  Google Scholar 

  54. R. Jacob, S.R. Sankaranarayanan, S.K. Babu, Recent advancements in manganese steels–A review. Mater. Today Proc. 27, 2852–2858 (2020). https://doi.org/10.1016/j.matpr.2020.01.296

    Article  CAS  Google Scholar 

  55. J. Archard, Contact and rubbing of flat surfaces. J. Appl. Phys. 24(8), 981–988 (1953). https://doi.org/10.1063/1.1721448

    Article  Google Scholar 

  56. L. Chen, Y. Zhao, X. Qin, Some aspects of high manganese twinning-induced plasticity (TWIP) steel, a review. Acta Metall. Sin. (Eng. Lett.) 26, 1–15 (2013). https://doi.org/10.1007/s40195-012-0501-x

    Article  CAS  Google Scholar 

  57. M.N. Shiekhelsouk, V. Favier, K. Inal, M. Cherkaoui, Modelling the behaviour of polycrystalline austenitic steel with twinning-induced plasticity effect. Int. J. Plast. 25(1), 105–133 (2009). https://doi.org/10.1016/j.ijplas.2007.11.004

    Article  CAS  Google Scholar 

  58. M. Soleimani, A. Kalhor, H. Mirzadeh, Transformation-induced plasticity (TRIP) in advanced steels: a review. Mater. Sci. Eng. A 795, 140023 (2020). https://doi.org/10.1016/j.msea.2020.140023

    Article  CAS  Google Scholar 

  59. R. Diekman, Deep cryogenic treatment. Therm. Process. Gear Solut. 2, 52–55 (2013)

    Google Scholar 

  60. T. Sonar, S. Lomte, C. Gogte, Cryogenic treatment of metal–a review. Mater. Today Proc. 5(11), 25219–25228 (2018). https://doi.org/10.1016/j.matpr.2018.10.324

    Article  CAS  Google Scholar 

  61. A. Razavykia, C. Delprete, P. Baldissera, Correlation between microstructural alteration, mechanical properties and manufacturability after cryogenic treatment: a review. Materials 12(20), 3302 (2019). https://doi.org/10.3390/ma12203302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. E.G. Moghaddam, N. Varahram, P. Davami, On the comparison of microstructural characteristics and mechanical properties of high-vanadium austenitic manganese steels with the Hadfield steel. Mater. Sci. Eng. A 532, 260–266 (2012). https://doi.org/10.1016/j.msea.2011.10.089

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Gazi University Scientific Research Project under Grant No FGA-2023-8195.

Author information

Authors and Affiliations

Authors

Contributions

GA was involved in validation, investigation, writing original draft, writing—review and editing, microstructure characterization and XRD analysis. OA was involved in investigation, writing—review and editing contributed to mechanical testing. BB was involved in project management, funding acquisition, verification and auditing.

Corresponding author

Correspondence to Gözde Altuntaş.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altuntaş, G., Altuntaş, O. & Bostan, B. Evaluation of the Effect of Shallow Cryogenic Treatment on Tribological Properties and Microstructure of High Manganese Steel. Inter Metalcast 18, 1523–1534 (2024). https://doi.org/10.1007/s40962-023-01131-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-023-01131-5

Keywords

Navigation