Skip to main content
Log in

Study on Carbon Deposition and Coil Breakdown Mechanism of Medium Frequency Coreless Induction Furnace

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The medium frequency coreless induction furnace has gradually replaced the cupola in cast iron melting. However, induction coils at the bottom 1–6 turns can experience issues posing production and resulting safety risks. A kind of coil interturn breakdown failure caused by black attachment has occurred in our engineering practices. To explain the attaching and breakdown mechanism, an experimental investigation and detailed analysis of physical and chemical processes are performed. SEM, EDS and Fourier transform infrared spectrum results show that the attachment is primarily composed of free carbon, with a mass and atomic fraction of 62 and 71%, respectively. There were no C-H bonds in the powdered black attachment. The redox reactions of SiO2 and C, hydrogen and disproportionation reactions of CO and the ionization reactions of H2O contribute to the C transfers. The physical isolation of the Isoplan board, which prevents the mixture of CO, CO2, H2, H2O, and O2 from diffusing, causes C deposited only on the coil surface. The conductive carbon deposition in a moisture environment reduces the insulation degree of interturns and generates high-voltage discharge between adjacent coils. According to the findings, three improvement strategies are proposed and validated: (1) drilling holes in the Isoplan board; (2) unplugging the silicate insulating cloth in the lining sintering; and (3) as new lining is put into service, silicon steel sheets are prioritized for use as furnace charge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. B. Jenkins, P. Mullinger, Industrial and process furnaces: principles, design and operation, 2nd edh (Elsevier, Amsterdam, The Netherlands, 2014)

    Google Scholar 

  2. P. Sinha, S.S. Chandra, An optimum design of the lining of a medium frequency induction melting furnace. Int. Trans. Oper. Res. 5(4), 255–259 (1998). https://doi.org/10.1016/S0969-6016(97)00020-8

    Article  Google Scholar 

  3. V.R. Gandhewar, S.V. Bansod, A.B. Borade, Induction furnace–a review. Int J Eng Technol 3(4), 277–284 (2011)

    Google Scholar 

  4. N. Bara, Review paper on numerical analysis of induction furnace. Int J Latest Trends Eng Technol 2(3), 178–184 (2013)

    Google Scholar 

  5. K. Phelan, Safe maintenance of induction furnaces... it’s all in the details. modern casting. 24-28 (2022).

  6. Y. Choi, H. Kim, D. Kim, E. Lee, H. Bae, Residual life prediction for induction furnace by sequential encoder with s-convolutional LSTM. Processes. 9(7), 1121 (2021). https://doi.org/10.3390/pr9071121

    Article  CAS  Google Scholar 

  7. D.S. Smalley, Induction furnace electrical fundamentals & safety circuits, AFS International Iron Melting Conference IMC November, 2003.

  8. A. Regordosa, N. Llorca-Isern, Chemical and structural characterization of slag compounds formed in the melting processes to produce spheroidal graphite cast irons. Inter Metalcast. 10, 421–434 (2016). https://doi.org/10.1007/s40962-016-0025-7

    Article  Google Scholar 

  9. C. Hartung, M. Liptak, R. Logan et al., Thermochemical evaluation of cast iron slags generated from a holding furnace. Inter Metalcast. (2023). https://doi.org/10.1007/s40962-022-00947-x

    Article  Google Scholar 

  10. C. Hartung, M. Liptak, R. Logan, L. Michels, Thermochemical evaluation of cast iron slags generated from a holding furnace. AFS Trans. 130, 225–233 (2022)

    Google Scholar 

  11. C. Lovegren, Evaluating the risk of corona discharge in superalloy vacuum induction melting furnace applications. Inter Metalcast. 14, 926–936 (2020). https://doi.org/10.1007/s40962-019-00392-3

    Article  CAS  Google Scholar 

  12. R. Stark, Controlling carbon, sulfur and metal penetration of induction furnace linings. Modern Casting. 90(11), 25–28 (2000)

    Google Scholar 

  13. A. Bermúdez, D. Gómez, M.C. Muñiz, P. Salgado, R. Vazquez, Numerical simulation of a thermo-electromagneto-hydrodynamic problem in an induction heating furnace. Appl. Numer. Math. 59(9), 2082–2104 (2009). https://doi.org/10.1016/j.apnum.2008.12.005

    Article  Google Scholar 

  14. A. Bermúdez, D. Gómez, M.C. Muniz et al., A FEM/BEM for axisymmetric electromagnetic and thermal modelling of induction furnaces. Int. J. Numer. Meth. Eng. 71(7), 856–878 (2007). https://doi.org/10.1002/nme.1952

    Article  Google Scholar 

  15. J.R. Wang, P.Y. Hsueh, P.Y. Zeng, P.H. Chu, Applying ANN to analyze the influence on the recovery of chrome after silicon and aluminums’ melting of 15–5PH (V) in EAF, IEEE/SICE International Symposium on System Integration (SII). IEEE (2011). https://doi.org/10.1109/SII.2011.6147559

    Article  Google Scholar 

  16. T. Kanno, Y. Iwami, T. Fukuo, N. Miyai, H. Nakae, Y. Hiramoto, Molten metal surface pattern and its generating mechanism in gray cast iron. Mater. Trans. 56(12), 2017–2022 (2015). https://doi.org/10.2320/matertrans.F-M2015827

    Article  CAS  Google Scholar 

  17. A.S. Zavertkin, Effects of mixture composition on the lining stability of a crucible induction furnace. Refract. Ind. Ceram 49(3), 213–215 (2008). https://doi.org/10.1007/s11148-008-9067-6

    Article  CAS  Google Scholar 

  18. A.S. Zavertkin, Effect of the lining and smelting technologies on slag formation in the induction-furnace smelting of cast iron. Refract. Ind. Ceram 54(1), 35–38 (2013). https://doi.org/10.1007/s11148-013-9544-4

    Article  CAS  Google Scholar 

  19. V. Grachev, Features of cast iron smelting in induction crucible furnaces. Arch. Foundry Eng. 17(3), 45–50 (2017). https://doi.org/10.1515/afe-2017-0088

    Article  CAS  Google Scholar 

  20. V.A. Grachev, Thermodynamics and mechanism of silicon reduction by carbon in a crucible reaction. Orient J Chem 32(6), 2929–2937 (2016)

    Article  CAS  Google Scholar 

  21. J.K. Yang, Improve the service life of coreless power frequency induction melting furnace lining. Nonferrous Metall Equip 2, 23–29 (1993). ((Chinese))

    Google Scholar 

  22. W.J. Duca, Melting methods & materials div 8–09-031 mass transport of carbon, sulfur and moisture through a silica lining. Trans Am Found Soc 117, 673 (2009)

    CAS  Google Scholar 

  23. S.D. Ebbesen, S.H. Jensen, A. Hauch, M.B. Mogensen, High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells. Chem. Rev. 114(21), 10697–10734 (2014). https://doi.org/10.1021/cr5000865

    Article  CAS  PubMed  Google Scholar 

  24. Y. Shin, W. Park, J. Chang, J. Park, Evaluation of the high temperature electrolysis of steam to produce hydrogen. Int. J. Hydrogen Energy 32(10–11), 1486–1491 (2007). https://doi.org/10.1016/j.ijhydene.2006.10.028

    Article  CAS  Google Scholar 

  25. R. Hino, K. Haga, H. Aita, K. Sekita, 38 R&D on hydrogen production by high-temperature electrolysis of steam. Nucl Eng Des. 233(1–3), 363–375 (2004)

    Article  CAS  Google Scholar 

  26. D. Penchini, G. Cinti, G. Discepoli, U. Desideri, Theoretical study and performance evaluation of hydrogen production by 200 W solid oxide electrolyzer stack. Int. J. Hydrogen Energy 39(17), 9457–9466 (2014). https://doi.org/10.1016/j.ijhydene.2014.04.052

    Article  CAS  Google Scholar 

  27. G. Schiller, M. Lang, P. Szabo, N. Monnerie, H.V. Storch, J. Reinhold, P. Sundarraj, Solar heat integrated solid oxide steam electrolysis for highly efficient hydrogen production. J. Power Sources 416, 72–78 (2019). https://doi.org/10.1016/j.jpowsour.2019.01.059

    Article  CAS  Google Scholar 

  28. H. Zhang, S. Su, X. Chen, G. Lin, J. Chen, Configuration design and performance optimum analysis of a solar-driven high temperature steam electrolysis system for hydrogen production. Int. J. Hydrogen Energy 38(11), 4298–4307 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.199

    Article  CAS  Google Scholar 

  29. X.F. Pang, G.F. Shen, The changes of physical properties of water arising from the magnetic field and its mechanism. Mod. Phys. Lett. B 27(31), 1350228 (2013). https://doi.org/10.1142/S021798491350228X

    Article  CAS  Google Scholar 

  30. X.F. Pang, The conductivity properties of protons in ice and mechanism of magnetization of liquid water. Eur Phys J B-Condens Matter Complex Syst 49(1), 5–23 (2006). https://doi.org/10.1140/eojb/e2006-00020-6

    Article  CAS  Google Scholar 

  31. G. Akgül, A. Kruse, Influence of salts on the subcritical water-gas shift reaction. J Supercrit Fluids 66, 207–214 (2012). https://doi.org/10.1016/j.supflu.2011.10.009

    Article  CAS  Google Scholar 

  32. R.L. Keiski, O. Desponds, Y.F. Chang, G.A. Somorjai, Kinetics of the water-gas shift reaction over several alkane activation and water-gas shift catalysts. Appl. Catal. A 101(2), 317–338 (1993). https://doi.org/10.1016/0926-860X(93)80277-W

    Article  CAS  Google Scholar 

  33. W.H. Chen, C.Y. Chen, Water gas shift reaction for hydrogen production and carbon dioxide capture: a review. Appl Energy. 258, 114078 (2020)

    Article  CAS  Google Scholar 

  34. N. Yoshida, T. Yamamoto, F. Minoguchi, S. Kishimoto, Effect of hydrogen on carbon deposition from carbon monoxide on nickel catalyst. Catal. Lett. 23(3), 237–243 (1994). https://doi.org/10.1007/BF00811358

    Article  CAS  Google Scholar 

  35. Y. Tao, S.D. Ebbesen, M.B. Mogensen, Degradation of solid oxide cells during co-electrolysis of steam and carbon dioxide at high current densities. J. Power Sources 328, 452–462 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.055

    Article  CAS  Google Scholar 

  36. K. Nishihiro, T. Maeda, K. Ohno, K. Kunitomo, Effect of H2 concentration on carbon deposition reaction by CO–H2 gas mixture at 773–973 K. ISIJ Int. 59(4), 634–642 (2019). https://doi.org/10.2355/isijinternational.ISIJINT-2018-393

    Article  CAS  Google Scholar 

  37. L. Chen, Y. Shi, N. Cai, Carbon deposition on nickel cermet anodes of solid oxide fuel cells operating on carbon monoxide fuel. J. Power Sources 225, 1–8 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.018

    Article  CAS  Google Scholar 

  38. S. Geng, W. Ding, S. Guo, X. Zhou, Y. Zhang, X. Lu, Carbon deposition on iron surfaces in CO–CO2 atmosphere. Ironmaking Steelmaking 42(9), 714–720 (2015). https://doi.org/10.1179/1743281215Y.0000000049

    Article  CAS  Google Scholar 

  39. W. Zhang, K. Li, J.H. Dong, C.Z. Li, A.H. Liu, J.H. Zhang, Z.L. Xue, Kinetic triplet from low-temperature carburization and carbon deposition reactions. J. Iron. Steel Res. Int. 29(10), 1545–1558 (2022). https://doi.org/10.1007/s42243-022-00780-w

    Article  CAS  Google Scholar 

  40. P. Stamenov, J.M.D. Coey, Magnetic susceptibility of carbon—experiment and theory. J magnetism and magnetic materials. 290, 279–285 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The work is financially supported by the Major Science and Technology Innovation Engineering project of Shandong Province, China (Grant No. 2019JZZY010445).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianchen Cong.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cong, J., Wang, H., Wang, D. et al. Study on Carbon Deposition and Coil Breakdown Mechanism of Medium Frequency Coreless Induction Furnace. Inter Metalcast 18, 1236–1246 (2024). https://doi.org/10.1007/s40962-023-01122-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-023-01122-6

Keywords

Navigation