Skip to main content

Advertisement

Log in

Effects of Cu Addition and Spheroidization Treatment on Microstructure and Mechanical Properties of Al–Si–Cu–Mg–Ti–Zr–Sr Alloys

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Herein, six types of Al–7Si–xCu–0.35Mg–0.12Ti–0.24Zr–0.05Sr alloys were prepared with different Cu contents (x = 0, 1.8, 2.1, 2.4, 2.7, and 3.0). The effects of Cu addition and spheroidization treatment on the microstructure and mechanical properties of the alloys were examined. The findings demonstrated that the θ-Al2Cu phase tended to concentrate near the β-Al5FeSi phase. Furthermore, Cu could refine the grain and passivate the eutectic Si. Among the as-cast alloys, the mechanical properties were found to be optimal when the Cu content was 2.7 wt%, with ultimate tensile strength (UTS), yield strength (YS), and elongation (El) values measuring 251.1 MPa, 159.5 MPa, and 5.7%, respectively. Despite the decrease in El, the UTS and YS improved by 23.6% and 23.5%, respectively, compared to the C0 alloy. However, excessive Cu content aggregated and adhered to the massive θ-Al2Cu phases, weakening the mechanical characteristics of the alloy. In addition, the spheroidization treatment caused significant spheroidization in the eutectic Si and promoted a more uniform size distribution. This treatment also facilitated the transition of the solid solution of numerous θ-Al2Cu phase into a matrix, leading to a uniformly dispersed precipitation of Al–Si–Cu and Al–Cu phases. Consequently, the mechanical properties of the alloys were considerably enhanced. When the Cu content was 2.7 wt%, the UTS, YS, and El of the alloy were 301.9 MPa, 174.4 MPa, and 9.1%, respectively, representing increases of 20.2%, 9.3%, and 59.7% compared with those of the as-cast alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. W.W. Ding, C. Xu, H.X. Zhang et al., Effects of Al–5Ti–0.62C–1.07La intermediate alloy on the microstructure and mechanical properties of A356 aluminum alloy. Mater. Res. Express 7, 036535 (2020). https://doi.org/10.1088/2053-1591/ab80ec

    Article  CAS  Google Scholar 

  2. X.I. Zhang, J.H. Liu, W.S. Li et al., Effect of Sr–Ce modification on the microstructure and mechanical properties of A356 alloy. Int. J. Metalcast. 17, 1008–1020 (2023). https://doi.org/10.1007/s40962-022-00818-5

    Article  CAS  Google Scholar 

  3. X.Y. Wu, Y. Yun, H.R. Zhang et al., Effect of holding pressure on microstructure and fracture behavior of low-pressure die cast A356–T6 alloy. Mater. Res. Express 4, 126501 (2017). https://doi.org/10.1088/2053-1591/aa9aa9

    Article  CAS  Google Scholar 

  4. W. Zhang, J. Xu, Advanced lightweight materials for automobiles: A review. Mater. Des 221, 110994 (2022). https://doi.org/10.1016/j.matdes.2022.110994

    Article  CAS  Google Scholar 

  5. B. Du, Q.C. Li, C.Q. Zheng et al., Application of lightweight structure in automobile bumper beam: a review. Materials 16(3), 967 (2023). https://doi.org/10.3390/ma16030967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. D. Bolibruchová, M. Kuriš, M. Matejka et al., Study of the influence of zirconium, titanium and strontium on the properties and microstructure of AlSi7Mg0.3Cu0.5 Alloy. Materials 15(10), 3709 (2022). https://doi.org/10.3390/ma15103709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. T. Tunçay, D. Özyürek, D. Dişpinar et al., The effects of Cr and Zr additives on the microstructure and mechanical properties of A356 alloy. Trans. Indian Inst. Met. 73, 1273–1285 (2020). https://doi.org/10.1007/s12666-020-01970-4

    Article  CAS  Google Scholar 

  8. M.F. Ibrahim, A.M. Samuel, H.W. Doty et al., Effect of aging conditions on precipitation hardening in Al–Si–Mg and Al–Si–Cu–Mg alloys. Int. Metalcast. 11, 274–286 (2017). https://doi.org/10.1007/s40962-016-0057-z

    Article  Google Scholar 

  9. N. Fang, C.M. Zou, Z.J. Wei et al., Effect of Ge and Mg additions on the aging response behavior and mechanical properties of Al–Si–Cu alloy. Mater. Sci. Eng. A 811, 141024 (2021). https://doi.org/10.1016/j.msea.2021.141024

    Article  CAS  Google Scholar 

  10. J.H. Li, S. Suetsugu, Y. Tsunekawa et al., Refinement of eutectic Si phase in Al–5Si alloys with Yb additions metal. Metall. Mater. Trans. A 44, 669–681 (2013). https://doi.org/10.1007/s11661-012-1410-3

    Article  CAS  Google Scholar 

  11. T.H. Ludwig, E.S. Dæhlen, P.L. Schaffer et al., The effect of Ca and P interaction on the Al–Si eutectic in a hypoeutectic Al–Si alloy. J. Alloys Compd. 586, 180–190 (2014). https://doi.org/10.1016/j.jallcom.2013.09.127

    Article  CAS  Google Scholar 

  12. G.L. Zhu, N.J. Gu, B.J. Zhou et al., Effects of combining Na and Sr additions on eutectic modification in Al–Si alloy. Mater. Sci. Eng. 230, 012015 (2017). https://doi.org/10.1088/1757-899x/230/1/012015

    Article  CAS  Google Scholar 

  13. J.H. Li, X.D. Wang, T.H. Ludwig et al., Modification of eutectic Si in Al–Si alloys with Eu addition. Acta Mater. 84, 153–163 (2015). https://doi.org/10.1016/j.actamat.2014.10.064

    Article  CAS  Google Scholar 

  14. M. Zarif, B. Mckay, P. Schumacher, Study of heterogeneous nucleation of eutectic Si in high-purity Al–Si alloys with Sr addition. Metall. Mater. Trans. A 42, 1684–1691 (2011). https://doi.org/10.1007/s11661-010-0553-3

    Article  CAS  Google Scholar 

  15. Y.C. Lin, S.C. Luo, J. Huang et al., Effects of solution treatment on microstructures and micro-hardness of a Sr-modified Al–Si–Mg alloy. Mater. Sci. Eng. A 725, 530–540 (2018). https://doi.org/10.1016/j.msea.2018.04.049

    Article  CAS  Google Scholar 

  16. J.H. Wang, J.Q. Zhu, Y. Liu et al., Effect of spheroidization of eutectic Si on mechanical properties of eutectic Al–Si alloys. J. Mater. Res. 33, 1773–1781 (2018). https://doi.org/10.1557/jmr.2018.144

    Article  CAS  Google Scholar 

  17. J.Q. Zhu, Y. Liu, H.P. Peng et al., Spheroidization of Si in Al–126 wt% Si at eutectic temperature and its tensile properties. Mater. Res. Express 4, 106505 (2017). https://doi.org/10.1088/2053-1591/aa8d4d

    Article  CAS  Google Scholar 

  18. M.A. Moustafa, F.H. Samuel, H.W. Doty et al., Effect of Mg and Cu additions on the microstructural characteristics and tensile properties of Sr-modified Al–Si eutectic alloys. Int. J. Cast. Met. Res. 14, 235–253 (2002). https://doi.org/10.1080/13640461.2002.11819442

    Article  CAS  Google Scholar 

  19. S.G. Shabestari, H. Moemeni, Effect of copper and solidification conditions on the microstructure and mechanical properties of Al–Si–Mg alloys. J. Mater. Process. Technol. 153–154, 193–198 (2004). https://doi.org/10.1016/j.jmatprotec.2004.04.302

    Article  CAS  Google Scholar 

  20. C.B. Basak, N.H. Babu, Influence of Cu on modifying the beta phase and enhancing the mechanical properties of recycled Al–Si–Fe cast alloys. Sci. Rep. 7, 5779 (2017). https://doi.org/10.1038/s41598-017-05937-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. M.T.D. Giovanni, E.A. Mørtsell, T. Saito et al., Influence of Cu addition on the heat treatment response of A356 foundry alloy. Mater. Today Commun. 19, 342–348 (2019). https://doi.org/10.1016/j.mtcomm.2019.02.013

    Article  CAS  Google Scholar 

  22. H.X. Cao, Q.C. Sun, Q.Q. Pu et al., Effect of vacuum degree and T6 treatment on the microstructure and mechanical properties of Al–Si–Cu alloy die castings. Vacuum 172, 109063 (2020). https://doi.org/10.1016/j.vacuum.2019.109063

    Article  CAS  Google Scholar 

  23. M. Samuel, H.W. Doty, S. Valtierra et al., Relationship between tensile and impact properties in Al–Si–Cu–Mg cast alloys and their fracture mechanisms. Mater. Des. 53, 938–946 (2014). https://doi.org/10.1016/j.matdes.2013.07.021

    Article  CAS  Google Scholar 

  24. Y. Zheng, W.L. Xiao, S.J. Ge et al., Effects of Cu content and Cu/Mg ratio on the microstructure and mechanical properties of Al–Si–Cu–Mg alloys. J. Alloys Compd. 649, 291–296 (2015). https://doi.org/10.1016/j.jallcom.2015.07.090

    Article  CAS  Google Scholar 

  25. M.K. Qiu, H. Liu, X.D. Du et al., Microstructure and properties of Al–Si–Mg–Cu–Cr matrix composites reinforced using in situ TiB2 particles and (Ce + Yb). Int. J. Metalcast. (2022). https://doi.org/10.1007/s40962-022-00898-3

    Article  Google Scholar 

  26. V.E. Bazhenov, M.A. Magura, Effects of Si and Cu contents on the grain size of Al–Si–Cu alloys. Mater. Sci. Technol. 34, 1287–1294 (2018). https://doi.org/10.1080/02670836.2018.1425237

    Article  CAS  Google Scholar 

  27. L. Alyaldin, A.M. Samuel, H.W. Doty et al., Effect of transition metals addition on the microstructure and incipient melting of 354-based alloys. Int. J. Metalcast. 14, 47–58 (2020). https://doi.org/10.1007/s40962-019-00331-2

    Article  CAS  Google Scholar 

  28. F.H. Samuel, Incipient melting of Al5Mg8Si6Cu2 and Al2Cu intermetallics in unmodified and strontium-modified Al–Si–Cu–Mg (319) alloys during solution heat treatment. J. Mater. Sci. 33(9), 2283–2297 (1998). https://doi.org/10.1023/a:1004383203476

    Article  CAS  Google Scholar 

  29. G.Q. Wang, X.F. Bian, W.M. Wang et al., Influence of Cu and minor elements on solution treatment of Al-Si–Cu–Mg cast alloys. Mater. Lett. 57(24–25), 4083–4087 (2003). https://doi.org/10.1016/s0167-577x(03)00270-2

    Article  CAS  Google Scholar 

  30. L. Han, Y.D. Sui, Q.D. Wang et al., Effects of Nd on microstructure and mechanical properties of cast Al–Si–Cu–Ni–Mg piston alloys. J. Alloys Compd. 695, 1566–1572 (2017). https://doi.org/10.1016/j.jallcom.2016.10.300

    Article  CAS  Google Scholar 

  31. H. Delasablonnière, F.H. Samuel, Solution heat treatment of 319 aluminum alloy containing ~ 0.5 wt%Mg. Part 2—microstructure and fractography. Int. J. Cast Met. Res. 9(4), 213–225 (1996). https://doi.org/10.1080/13640461.1996.11819662

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from Anhui Provincial Key Research and Development Plan (Grant: No. 202104a05020047 and No. 2022a05020032), Industrial guiding fund of changfeng county and hefei university of technology (Grant: JZ2019QTXM0281), key research and development plan of Guangxi Province (Grant: 2020AA06003AA), Intelligent manufacturing Institute of HFUT. (Grant: IMICZ2019003) and Fundamental Research Funds for the Central Universities (Grant: PA2020GDGP0054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Hu, W., Pang, Y. et al. Effects of Cu Addition and Spheroidization Treatment on Microstructure and Mechanical Properties of Al–Si–Cu–Mg–Ti–Zr–Sr Alloys. Inter Metalcast 18, 1401–1413 (2024). https://doi.org/10.1007/s40962-023-01121-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-023-01121-7

Keywords

Navigation